

Contents

Introduction
Acknowledgements

Part I. Background

1. Prerequisites

2. What’s in a Word

2.1. Word Descriptors

2.2. Parts of Speech

2.3. Stopwords

2.4. Named Entities

2.5. Syntax

2.6. Caveats — What if it’s not English?
3. Representing Text

3.1. Enter the Matrix

3.2. Discrete Representations
3.3. Distributed Representations
3.4. Discrete vs. Continuous

4. Regular Expressions
5. Entropy
6. Pointwise Mutual Information

Part II. Exploration
Finding Structure in the Data

1.

1.1.
1.2.
1.3.
1.4.
2.

2.1.
2.2.
2.3.
2.4.
2.5.

Matrix Factorization

Dimensionality Reduction
Visualization

Word descriptors
Comparison

Clustering

K-Means

Agglomerative Clustering
Comparison

Choosing the Number of Clusters
Evaluation

11
12
14
15
18
20
22
22
25
27
28
29
38
49
51
54
56

61
62
62
64
67
69
71
71
72
74
75
75

4 CONTENTS

3. Language Models 77
3.1. The Markov Assumption 78
3.2. Trigram LMs 78
3.3. Maximum likelihood estimation (MLE) 79
3.4. Probability of a Sentence 79
3.5. Smoothing 80
3.6. Generation 81
4. Topic Models 83
4.1. Caveats 86
4.2. Implementation 87
4.3. Selection and Evaluation 89
4.4. Adding Structure 90
4.5. Adding Constraints 92
4.6. Topics vs. Clusters 92
5. Retrofitting 94

Part III. Prediction

Using patterns in the data 97
1. Ethics, Fairness, and Bias 99
1.1. Sources of Bias 100
1.2. Privacy 103
1.3. Normative vs. Descriptive Ethics 104
1.4. Dual Use 104
2. Classification 106
2.1. Checklist Text Classification 110
3. Labels 112
4. Train-Dev-Test 113
4.1. Cross-Validation 115
5. Performance Metrics 117
6. - Comparison and Significance Testing 120
7. Overfitting and Regularization 124
8. Model Selection and Other Classifiers 127
8.1. Support Vector Machines 128
8.2. 'Naive Bayes 130
9. Model Bias 131
10. Feature Selection 133
10.1. Dimensionality Reduction 133
10.2. Chi-Squared 133
10.3. Randomized Regression 134
11. Retrofitting to Increase Within-Class Similarity 136
12. Structured Prediction 138

12.1. The Structured Perceptron 140

CONTENTS

13. Neural Networks Background
13.1. Neural History

13.2. Network Basics

13.3. The Perceptron

13.4. The Multilayer-Perceptron
13.5. Computation

13.6. Error Computation

13.7. Dropout

13.8. Data Preprocessing

14. Neural Architectures and Models
14.1. Convolutional Neural Nets
14.2. Recurrent Neural Nets

14.3. Attention

14.4. The Transformer

14.5. Neural Language Models

Index

Bibliography
1. Probabilities
1.1. Joint Probability
1.2. Conditional Probability
1.3. Probability Distributions
2. English Stopwords

158
159
160
162
167
169
170
171
171
173
173
176
180
181
185

187

191
205
206
206
207
210

unstructured data

Today, text is an integral part of our lives, and one of the most abundant sources
of information. On an average day, we read about 9000 words. That includes emails,
text messages, the news, blog posts, reports, tweets, and things like street names and
advertisements. Throughout a lifetime of reading, this gets us to about 200,000,000
words. It sounds impressive (and it is), and yet, we can store this amount of information
can in less than half a gigabyte: we could carry a life’s worth of reading around on a USB
stick. At the time of writing this, the Internet contains an estimated minimum of over
1200 TB of text, or 2.5 million lives worth of reading. A large part of that text is now
in the form of social media: microblogs, tweets, Facebook statuses, Instagram posts,
online reviews, LinkedIn profiles, YouTube comments, and many others. However, text
is abundant even offline — in quarterly earnings reports, patent filings, questionnaire
responses, written correspondence, song lyrics, poems, diaries, novels, parliamentary
proceedings, meeting minutes, and thousands of other forms that can be (and are) used
in social science research and data mining.

Text is an excellent source of information, not just because of its scale and avail-
ability. It is also (relatively) permanent, and—most importantly—it encodes language.
This one human faculty reflects (indirectly and sometimes even directly) a wide range
of socio-cultural and psychological constructs: trust, power, beliefs, fears. Text analysis
has consequently been used to measure socio-cultural constructs such as trust (Niculae
et al., 2015) and power (Prabhakaran et al., 2012). Language encodes the age, gender,
origin, and many other demographic factors of the author (Labov, 1972; Trudgill, 2000;
Pennebaker, 2011). Text can, therefore, be used to measure the attitudes of society to-
wards those target concepts over time, see (Kulkarni et al., 2015; Hamilton et al., 2016;
Garg et al., 2018).

However, this avalanche of great data can quickly become overwhelming, and deal-
ing with it can feel daunting. Text is often called “unstructured data”, meaning it does
not come in a spreadsheet, neatly ordered into categories. It has varying lengths, and
can not readily be fed into your favorite statistical analysis tool without formatting it
first. As we will see, though, “unstructured” is a bit of a misnomer. Text is by no means
without any structure — it follows very regular structures, governed by syntactic rules.
And if you know about these, it becomes a lot easier to make sense of text.

There are even simpler regularities in text that we can explore to get information.
From simple counts to probabilities, we can do a lot to weed out the noise and gather
some insights into the data. And then there are the heavy-lifters: machine learning tools
that can crunch almost limitless amounts of data and extract precisely the information
you want. Well, as precise as these tools can get.

This book is aimed at the working social scientist who wants to use text in their
exploratory analysis. It is, therefore, first and foremost, a practical book, giving
concrete examples. Each section contains Python 3.6 code using the latest available
Python packages to execute the examples we will discuss. This book assumes enough

9

familiarity with Python to follow those examples. It does not serve as an introduction
to programming.

Using off-the-shelf libraries, rather than coding the algorithms from first principles,
strips away some of the complexity of the task, which makes it a lot more approachable.
It also allows programming novices to use efficient code to try out a research idea,
rather than spending days to make the code scale to the problem and debug it. At
the same time, using packages hides some of the inner workings of the algorithms.
However, 1 would argue that we do not need to implement the algorithms from
scratch to use these tools to the full potential. It is essential, though, to know how
these tools work. Knowing what is going on under the hood helps us make the right
choices and to understand the possibilities and limitations. For each example, we will
look at the general idea behind the algorithm, as well as the mathematical underpin-
nings. If you would like to dive deeper into a particular technique, or need to modify
it to suit your needs, I will provide pointers to detailed tutorials and background reading.

Natural language processing (NLP), the branch of AI that applies machine learn-
ing methods to text), is becoming ubiquitous in social sciences. There is a growing
number of overview articles and tutorials on text analysis and in several disciplines.
These works cover the most relevant terms, models, and use cases for the respective
fields. It makes sense to consult them to see what people in a specific field have been
using. Some of the more recent examples include Grimmer and Stewart (2013) for
political science, Evans and Aceves (2016) for sociology, Humphreys and Wang (2017)
and Hartmann et al. (2018) for marketing, and Gentzkow et al. (2017) for economics.

The best starting point to dive into NLP in all its depth and glory is the textbook
by Jurafsky and Martin (2014), which is constantly updated (important for such a
dynamic field). The book by Manning and Schiitze (1999) is still a good complement,
especially on the fundamentals, despite its age and lack of some of the latest machine
learning approaches. The latest textbook is Eisenstein (2019). If you are interested
in specific topics, you can search the anthology of the Association for Computational
Linguistics (ACL), the official organization of most NLP research. All publications
in this field are peer-reviewed conference proceedings (with acceptance rates around
20-25%), and the entire catalog of all papers ever published is available for free at
https://www.aclweb.org/anthology/. The field borrows heavily from
machine learning, especially deep learning. For an excellent overview of the most
relevant deep learning methods in NLP, see the book by Goldberg (2017), or the freely
available primer (Goldberg, 2016) it is based on. To explore these topics in Python, the
book by Marsland (2015) and Chollet (2017), respectively, are very practically oriented
and beginner-friendly. For a very readable general overview of machine learning, see
Murphy (2012).

This book has three parts. In the first part, we will look at some of the basic
properties of text and language — the levels of linguistic analysis, grammatical and

10

semantic components, and how to describe them. We will also discuss what to remove
and what to keep for our analyses and how to compute simple, useful statistics.

In the second part, we will look at exploration, the discovery of latent structure in the
data. We will go from simple statistics to more sophisticated machine learning methods,
such as topic models, word embeddings, and dimensionality reduction.

In the third part, we will cover text classification, such as sentiment analysis and
other supervised machine learning techniques. We will also cover basic notions of ethics
in NLP, performance measures and improvements, as well as significance testing. In the
light of recent advances of deep learning techniques for NLP, those topics will receive
special, separate attention.

Acknowledgements

I would like to thank all the participants of my first NLP classes at Bocconi for
their detailed feedback on the first drafts of this material, and everyone who has made
suggestions.

If you find a mistake, have a suggestion, or know of a missing reference, please
contact me directly!

Part I
Background

Jupyter notebooks

spacy
nltk
gensim

1. Prerequisites

This book assumes some basic familiarity with Python. However, it does not replace
an introduction to programming. If you are looking to learn Python, or to refresh the
basics, the official Python website lists a number of excellent online tutorials (https:
//wiki.python.org/moin/IntroductoryBooks) and text books (https:
//wiki.python.org/moin/BeginnersGuide/NonProgrammers).

To develop Python programs, one of the easiest environments is that of Jupyter
notebooks, which allow for code, text, and images to be stored in a platform-
independent way. It is an excellent way to visualize and store intermediate steps. To
use these notebooks, you will have to install Anaconda Python and make sure it is run-
ning. The easiest way to do so is by using the following steps:

(1) download Anaconda with Python 3.7 or higher for your operating system from
https://www.anaconda.com/download/
(2) install Anaconda and make it is set as your system default Python
(3) open the Jupyter Notebook app either by
(a) opening the Anaconda Navigator app and clicking on “Jupyter Notebook™
(b) OR: opening a terminal window and typing “jupyter notebook”
(4) this will give you a browser window with a file structure. Make sure you know
where on your computer this folder is!
(5) open a new Notebook window and copy the code from the code snippet 1 below

into it
(6) execute the code in the notebook by either clicking the Play button or hitting
SHIFT+ENTER
garble = 'C#LoBln{;gFzZr>!a%LtVQu! (l&Ya'!zt/;i1i iofKn: sg_,gh %$gyGroUquJd

jeaY!r:—elm $talzZlbCr "e;Fa{Yd,hy>] _xog*nb{ |Ky*PoY)uTKr&K %)
wipa@ny{g QEtMloXy %apWsr, foO\'g+RryBaD\'mT-m*}iIrnE;gy=!>t"

2 print (''.join([garble[c] for c in range (0, len(garble), 3)1))

CODE 1. Our first Jupyter notebook code.
You should see an encouraging message if all is working correctly.

In order to work with text, we will use the following libraries:

(1) spacy (including at least the English language model)
(2) nltk (including the data sets it provides)
(3) gensim (for topic models)

The spacy library should come pre-installed in Anaconda, but you will have to
download the models for various languages. You can check this by executing the fol-
lowing code in a notebook cell:

1 import spacy
2 spacy.load('en')

1. PREREQUISITES 13

CODE 2. Loading the English language model of spacy.

If you get an error, install at least the English model (there are additional languages
available). See https://spacy.io/usage/models#section-install for
details on how to do this.

You can install the gensim and nltk library through Anaconda—which we will need
for embeddings and topic models—either through the Anaconda Navigator or the termi-
nal by executing the following lines:

1 conda install nltk
2 conda install gensim

In order to install the NLTK data sets, you can simply execute the instructions in the
following code cell in a notebook:

1 import nltk
2 nltk.download('all")

CODE 3. Downloading the data sets of n1tk.

semantics
syntax
morphology

documents
corpus
vocabulary

type
token

14

2. What’s in a Word

Say we have collected a large number of companies’ self-descriptions from their
websites. We want to start finding out whether there are any systematic differences,
what the big themes are, and how the companies typically act. The question is: How
do we do all that? Does it matter that firms buy, bought, and are buying — or do we
only want to know that there is any buying event, no matter when? Do we care about
prepositions (e.g., in, off, over, about, etc.), or are they just distracting us from what we
really want to know? How do we tell the program that “Facebook acquires Whatsapp”
and “Whatsapp acquired by Facebook” mean the same thing, but “Whatsapp acquires
Facebook™ does not (even though it uses the same words as the first example)?

Before we dive into the applications, let’s take a look at the subject we are working
with: language. In this section, we will look at the terminology to describe some
of its basic elements (morphology, syntax, and semantics), and their equivalents in
text (characters, words, sentences). To choose the right method for any text-related
research question we have, it makes sense to-think about what language is and what
it is not, how it is structured, and how it “works”. This section does not replace an
introduction to linguistics, but it gives us a solid starting point for our purposes. If you
are interested in reading more on this, there are many excellent introductory textbooks
to linguistics and its diverse subfields. One of the most entertaining ones is Fromkin
et al. (2018). For a more focused overview of English and its history, see Crystal (2003).

Language often encodes information redundantly, i.e., we say the same thing in
several ways: through the meaning of the words, their position, the context, and many
other cues. Words themselves consist of different components, which are the focus of
different linguistic disciplines: their meaning (semantics), their function in a sentence
(syntax), the prefixes and endings (morphology). Not all words have all of this
information. And when we work with textual data, we might not be interested in all of
this information. In fact, it can be beneficial to remove some of the information we do
not need.

When we work with text, the unit we are interested in depends strongly on the
problem we investigate. Traditionally, this was a report or article. However, when we
work with social media, it can also refer to a user’s entire posting history, to a single
message, or even to an individual sentence. Throughout this Element, we will refer to
all these units of text as documents. It should be clear from the context what size a
document has. Crucially, one document always represents one observation in our data.
To refer to the entire collection of documents/observations, we use the word corpus
(plural corpora).

The set of all the unique terms in our data is called the vocabulary (1'). Each ele-
ment in this set is called a type. Each occurrence of a type in the data is called a token.
So the sentence “a good sentence is a sentence that has good words” has 10 tokens, but

1

2
3
4

5

2. WHAT’S IN A WORD 15

€6 9% ¢

only 7 types (namely “a”, “good”, “sentence”, ““is”, “that”, “has”, and “words”). Note
that types can also include punctuation marks and multi-word expressions (see more in
Section 6).

2.1. Word Descriptors.

2.1.1. Tokens and Splitting. Imagine we are looking at reports and want to filter out
short sentences because they don’t contain anything of interest. The easiest way to do so
is by defining a cutoff for the number of words. However, it can be surprisingly tricky to
define what a word is. How many words are there in “She went to Berlin,” and in “She
went to San Luis Obispo”? The most general definition used in many languages is any
string of characters delimited by white space. However, note that Chinese, for example,
does not use white space between words. Unfortunately, not all words are surrounded
by white space. Words at the beginning of a line have no white space beforehand. Words
at the end of a phrase or sentence might have a punctuation symbol (commas, full stops,
exclamation or question marks, etc.) directly attached to them. Quotation marks and
brackets complicate things even more.

Of course, we can separate these symbols by introducing extra white space. This
process is called tokenization (because we make each word and punctuation mark a
separate token). There is a different process, called sentence splitting, which separates
a document into sentences and works similarly. The problem there is to decide when
a dot is part of a word (as in titles like Mr. or abbreviations like abbr.), or a full stop
at the end of a sentence. Both tokenization and sentence splitting are prediction tasks,
for which there exist reliable machine learning models. We will not discuss the inner
workings of these tools in detail here, but instead rely on the available Python imple-
mentations in the spacy library.

We need to load the library, create an instance for the language we work with (here,
English), and can then use it on any input string.

import spacy
nlp = spacy.load('en')

4 documents = "I've been 2 times to New York in 2011, but did not have

the constitution for it. It DIDN'T appeal to me. I preferred Los
Angeles."

tokens = [[token.text for token in sentence] for sentence in nlp(
documents) .sents]

CODE 4. Applying sentence splitting and tokenization to a set of document.
Executing the example in Code 4 gives us the following results for t okens:
(grz', "'ve", 'been', '2', 'times', 'to', 'New', 'York', 'in', '2011"
, ',', 'but', 'did', 'not', 'have', 'the', 'constitution', 'for',
SR , v] ,

['It', "DIDN'T", 'appeal', 'to', 'me', '.'],

word

tokenization
sentence splitting

regular verbs
irregular verbs

base form

lemma

lemmatization

1

16
['T', 'preferred', 'Los', 'Angeles', '.']]

Notice that the capitalized word DIDN’T was not tokenized properly, but the first,
lowercased, version was. This difference suggests a common and simple solution,
namely converting everything to lower case as a preprocessing step.

2.1.2. Lemmatization. Suppose we have a large corpus of articles from the business
section of various newspapers. We are interested in how often and which companies
acquire each other. We have a list of words, but words come in different forms,
depending on the tense and aspect, so we might have to look for “acquire”, “acquires”,
“acquired”, and “acquiring” (since we are dealing with newspaper articles, they might
be referring to recent events, to future plans, and they might quote people). We could
try to formalize this pattern by just looking for the endings —e, —es, —ed, and —ing,
but that only works for regular verbs ending in —re. If we are interested in irregular
verbs, we might see forms like “go”, “goes”, “went”, “gone”, or “going”. And it
does not stop there: the firms we are looking for might acquire just one ‘“‘subsidiary”,
or several “subsidiaries”, one “company” or several “companies”. We need a more
principled way to deal with this variation.

When we look up a word in a dictionary, we usually just look for the base form
(in the previous example, that would be the infinitive, “go”). This dictionary base
form is called the lemma. All the other forms don’t change the core meaning of this
lemma, but add further information (such as temporal and other aspects). Many of
these inflections are required by the syntax, i.e., the context and word order that make a
sentence grammatical. When we work with text and are more interested in the meaning,
rather than the morphology or syntax, it can be useful to replace each word with its
lemma. This step reduces the amount of variation in the data, and makes it easier
to collect meaningful statistics. Rather than getting a single count for each of “go”,
“goes”, “went”, “gone”, and “going”, we would simply record having seen the form
“go” five times in our data. This reduction does lose some of the temporal and other
syntactic information, but it might be irrelevant for our purposes. Many words can be
lemmatized by undoing certain patterns, based on the type of word (e.g., remove “—ed”
from the end of a verb like “walked”, but remove “—ier” from the end of an adjective
like “happier”). For the exceptions (for example, “to go”), we have to have a lookup
table.

Luckily, lemmatization is already built into spacy, so we can make use of it.
Applying lemmatization to our example sentences from above:

lemmas = [[token.lemma_ for token in sentence] for sentence in nlp(
documents) .sents]

CODE 5. Applying lemmatization to a set of documents.

we get

1

2

3

w N =

w

2. WHAT’S IN A WORD 17

[['-PRON-"', 'have', 'be', '2', 'time', 'to', 'new', 'york', 'in', '

2011', ',', 'but', 'do', 'not', 'have', 'the', 'constitution', '
for', '"-PRON-', '.'],
['"-PRON-', "didn't", 'appeal', 'to', '-PRON-', '.'],

['"-PRON-', 'prefer', 'los', 'angeles', '.']]

Note that as part of the process, all words are converted to lower case (if we have not
done so already ourselves), while pronouns are all conflated as a special token ~-PRON—
(see also next section, 2.2). Again, the word DIDN’T was not lemmatized correctly, but
simply changed to lowercase.

2.1.3. Stemming. Maybe we are searching legal texts for political decisions,
and we are generally interested in anything that has to do with the constitution. So
the words “constitution”, “constitutions”, “constitutional”, “constitutionality”, and
“constitutionalism” are all of interest to us, despite having different parts of speech.
Lemmatization will not help us here, so we need another way to group them across
word classes.

An even more radical way to reduce variation is stemming. Rather than reduc-
ing a word to the lemma, we strip away everything but the irreducible morphological
core (the stem). E.g., for a word like “anticonstitutionalism”, which can be analyzed as
“anti+constitut+ion+al+ism”, we remove everything but “constitut”. The most famous
and commonly used stemming tool is based on the algorithm developed by Porter
(1980). For each language, it defines a number of suffixes (i.e., word endings), and
the order in which they should be removed or replaced. By repeatedly applying these
actions, we reduce all words to their stem. In our example, all words derive from the
stem ““constitut—", by attaching different endings.

Again, a version of the Porter stemmer is already available in Python, in the n1tk
library (Loper and Bird, 2002), but we have to specify the language:

from nltk import SnowballStemmer
stemmer = SnowballStemmer ('english')
stems = [[stemmer.stem(token) for token in sentence] for sentence in

[
tokens]

CODE 6. Applying stemming to a set of documents.
This gives us

[(f'is', 've', 'been', '2', 'time', 'to', 'new', 'york', 'in', '2011°',
',', 'but', 'did', 'not', 'have', 'the', 'constitut', 'for', 'it',
P

['it', "didn't", 'appeal', 'to', 'me', '.'],

', 'prefer', 'los', 'angel', '.']]

While this is extremely effective in reducing variation in the data, it can make the results
harder to interpret. One way to address this problem is to keep track of all the original

stemming

stem

suffix

n-gram
unigrams
bigrams
trigrams

1
2

o e
)N R O W doy U W N

e e
0 oUW

19

18

words that share a stem, and how many times each of them occurred. We can then
replace the stem with the most common derived form (in our example, this would most
likely be “constitution”). Note that this can conflate word classes, say nouns and verbs,
so we need to decide whether to use this depending on our goals.

2.1.4. n-Grams. Looking at words individually can be a good start. Often, though,
we want to look also at the immediate context. In our example, we have two concepts
that span two words, “New York™ and “Los Angeles”, and we do not capture them by
looking at each word in turn.

Instead of looking at each word in turn, we can use a sliding window of n words to
examine the text. This window is called an n-gram, where n can have any size. Indi-
vidual words are also called unigrams, whereas combinations of two or three words are
called bigrams and trigrams, respectively. For larger n, we simply write the number,
e.g., “4-grams”.

We can extract n-grams with a function from nltk:

from nltk import ngrams

bigrams = [gram for gram in ngrams (tokens([0], 2)]
CODE 7. Extracting bigrams from a sentence.
This gives us

(¢rr', "'tve"),

("'ve", 'been'),
("been', '2'"),

('2'", 'times'),
('times', 'to'),

('to! 'New'),

("New', 'York'),

("York' 'in'),

("in', '2011"),

("20117, ","),

(',', 'but'),

('but', 'did'"),

('did', 'not'),

("not', 'have'),
("have', 'the'),

("the', 'constitution'),
('constitution', 'for'),
("for', 'it'"),

(

'it', 1,07

We will see later how we can join frequent bigram expressions that are part of the same
“word” (see section 6).

2.2. Parts of Speech. Let’s say we have collected a large corpus of restaurant
menus, including both fine dining and fast-food joints. We want to know how each

2. WHAT’S IN A WORD 19

of them describes the food. Is it simply “grilled”, or is it “juicy”, “fresh”, or even
“artisanal”? All of these food descriptors are adjectives, and by extracting them and
correlating them with the type of restaurant who use them, we can learn something
about the restaurants’ self-representation — and about the correlation with price.'

At a very high level, words denote things, actions, and qualities in the world.
These categories correspond to parts of speech, e.g., nouns, verbs, and adjectives
(most languages have more categories than just these three). They are jointly called
content words or open-class words because we can add new words to each of these
categories (for example, new nouns, like “Tweet”, or verbs like “twerking”). There are
other word classes, like determiners, prepositions, etc. (see below). They don’t “mean”
anything (i.e., they are not referring to a concept) but help to structure a sentence and
to make it grammatical. They are therefore referred to jointly as function words or
closed-class words (it is very unlikely that anybody comes up with a new preposition
any time soon). Partially because function words are so short and ubiquitous, they are
often overlooked. While we have a rough idea of how many times we have seen the
noun “class” in the last few sentences, it is almost impossible to consciously notice how
often we have seen, say, “in”. 2

Languages differ in the way they structure sentences. = Consequentially, there
was little agreement about the precise number of these grammatical categories,
beyond the big three of content words (and even those are not always sure).
The need for NLP tools to work across languages recently spawned efforts to
come up with a small set of categories that applies to a wide range of lan-
guages (Petrov et al., 2011). It is called the Universal Part-of-Speech tag set (see
https://universaldependencies.org/u/pos/). In this book, we will use
this set of 15 parts of speech.

Open-class words:

e ADIJ: adjectives. They modify nouns to specify their properties. Examples:
awesome, red, boring

e ADV: adverbs. They modify verbs, but also serve as question markers. Exam-
ples: quietly, where, never

e INTIJ: interjections. Exclamations of some sort. Examples: ouch, shhh, oi

e NOUN: nouns. Entities in the world. Examples: book, war, shark

IThis example is based on the book “The Language of Food: A Linguist Reads the Menu”, by Dan
Jurafsky. He did exactly-this analysis, and found that the kinds of adjectives used are a good indicator of
the price the restaurant charges (though maybe not necessarily of the quality).

’Even though we do not notice function words, we tend to have individual patterns for using them.
This property makes them particularly interesting for psychological analysis and forensic linguistics. The
book “The Secret Life of Pronouns: What Our Words Say About Us” by James Pennebaker examines
this quality of function words. They can therefore be used to identify kidnappers, predict depression, or
assess the stability of a marriage.

adjectives

parts of speech
content words

open-class words

function words
closed-class words

POS tagging
parsing

20

e PROPN: proper nouns. Names of entities, a subclass of nouns. Examples:
Rosa, Twitter, CNN
e VERB: full verbs. Events in the world. Examples: codes, submitted, succeed

Closed-class words:

e ADP: adpositions. Prepositions or postpositions, markers of time, place, bene-
ficiary, etc. Examples: over, before, (get) down

e AUX: auxiliary and modal verbs. Used to change time or modality. Examples:
have (been), could (do), will (change)

e CCONIJ: coordinating conjunctions. Link together parts of sentences with
equal importance. Examples: and, or, but

e DET: determiners. Articles and quantifiers. Examples: a, they, which

e NUM: numbers. Exactly what you would think itis...

e PART: particles. Possessives and grammatical markers. Examples: ’s

e PRON: pronouns. Substitutions for nouns. Examples: you, her, his, myself

e SCON!IJ: subordinating conjunctions. Link together parts of sentences with one
part being more important. Examples: since, if, that

Other

e PUNCT: punctuation marks. Examples: /, ?, —
e SYM: symbols. Word-like entities, often special characters, including emojis.
Examples: %, $, :)
e X: other. Anything that does not fit into any of the above. Examples: pffffrt
Automatically determining the parts of speech and syntax of a sentence are known

as POS tagging and parsing, two of the earliest and most successful NLP applications.
We can again use the POS-tagger in spacy:

1 pos = [[token.pos_ for token in sentence] for sentence in nlp(

documents) .sents]

CODE 8. POS-tagging a set of documents.
This gives us

[['PRON', 'VERB', 'VERB', 'NUM', 'NOUN', 'ADP', 'PROPN', 'PROPN', '
ADP', 'NUM', 'PUNCT', 'CCONJ', 'VERB', 'ADV', 'VERB', 'DET', 'NOUN
', 'ADP', 'PRON', 'PUNCT'],

['PRON', 'PUNCT', 'VERB', 'ADP', 'PRON', 'PUNCT'],

['PRON', 'VERB', 'PROPN', 'PROPN', 'PUNCT']]

Because POS tagging was one of the first successful NLP applications, a lot of
research has gone into it. By now, POS taggers are more accurate, more consistent, and
definitely much faster than even the best-trained linguists.

2.3. Stopwords. If we want to assess the general topics in product reviews, we
usually do not care whether a review refers to “the price” or “a price”, and can remove
the determiner. Similarly, if we are looking at the political position of parties in their

w N =

N

N

w

2. WHAT’S IN A WORD 21

manifestos, we know who wrote for each manifesto. So we do not need to keep their
names when they mention themselves in the document. In both cases, we have a set of
words that occur often, but do not contribute much to our task, so it can be beneficial to
remove them. The set of these ignorable words is called stopwords.

As we have seen above, many words in a text belong to the set of function words. In
fact, the most-frequent words in any language are predominantly function words. The
ten most common words in English (according to the Oxford English Corpus), with
their parts of speech are: the (DET), be (VERB/AUX), to (ADP/PART), of (ADP), and
(CCONJ), a (DET), in (ADP), that (CCONIJ), have (VERB/AUX), I (PRON). While
these are all very useful words when building a sentence, they do not really mean much
on their own, i.e., without context. In fact, for most applications (e.g., topic models, see
Boyd-Graber et al. (2014)), it is better to ignore them altogether.?

We can either exclude stopwords based on their part of speech (see above), or by
using a list. The former is more general, but it risks throwing out some unintended
candidates. (If we exclude prepositions, we risk losing the noun “round” if it gets incor-
rectly labeled.) The latter is more task-specific (e.g., we can use a list of political party
names), but it risks leaving out words we were not aware of when compiling the list.
Often, it can therefore be beneficial to use a combination of both. In spacy, we can use
the is_stop property of a token, which checks it against a list of common stopwords.
The list of English stopwords is in Appendix 2.

For our running example, if we exclude common stopwords, and filter out non-
content words (all parts of speech except NOUN, VERB, PROPN, ADJ, and ADV):

content = [[token.text for token in sentence
if token.pos_ in {'NOUN', 'VERB', 'PROPN', 'ADJ', 'ADV'}
and not token.is_stop]
for sentence in nlp (documents) .sents]

CODE 9. Selecting content words based on POS.

This gives us

[["'ve", 'times', 'New', 'York', 'constitution'],
['appeal'l,
['preferred', 'Los', 'Angeles']]

Another way to reduce variation is to replace any numbers with a special token,
rather than to remove them. There are infinitely many possible numbers, and in many
contexts, we do not care about the exact amount they denote (unless, of course, we are
interested in prices). We will see an example of how to do this most efficiently in section
4, when we learn about regular expressions.

3See the exception for profiling above, though.

stopwords

named entities

named entity recog-
nizer

1
2
3

22

2.4. Named Entities. Say we are interested in the changing patterns of tourism
and want to find the most popular destinations over time in a corpus of travel blogs. We
would like a way to identify the names of countries, cities, and landmarks. Using POS
tagging, we can easily identify all proper names, but that still does not tell us with what
kind of entity we are dealing. These semantic categories of words are referred to as
named entities.

Proper names refer to entities in the real world, such as companies, places, per-
sons, or something else: e.g., Apple, Italy, George Oscar Bluth, LAX or Mercedes.
While implementing a named entity recognizer (NER) is outside the scope of this
work, it generally works by using a list of known entities that are unlikely to change
(for example, country names or first names). However, names are probably the most
open-ended and innovative class of words, and there are plenty of entities that are not
listed anywhere. Luckily, we can often determine what kind of entity we have by
observing the context in which they occur. E.g., company names might be followed by
“Inc.”, “LLC”, etc. Syntax can give us more cues—if an entity says something, eats,
sleeps, or is associated with other verbs that denote human activities, we can label it
as a person. (Of course, this gets trickier when we have metaphorical language, e.g.,
“parliament says...”).

Luckily, spacy provides a named entity recognizer that can help us identify a wide
range of types: PERSON, NORP (Nationality OR Religious or Political group), FAC
(facility), ORG (organization), GPE (GeoPolitical Entity), LOC (locations, such as seas
or mountains), PRODUCT, EVENT (in sports, politics, history, etc.), WORK_OF_ART,
LAW, LANGUAGE, DATE, TIME, PERCENT, MONEY, QUANTITY, ORDINAL (or-
dinal numbers such as “third”, etc.), and CARDINAL (regular numbers).

For our running example, we can use the following code to extract the words and
their types:

entities = [[(entity.text, entity.label)
for entity in nlp(sentence.text) .ents]
for sentence in nlp (documents) .sents]

CODE 10. Named Entity Recognition.
This gives us
[[('2', 'CARDINAL'), ('New York', 'GPE'), ('2011', 'DATE")],

(1,
[('Los Angeles', 'GPE')]]

2.5. Syntax.

2. WHAT’S IN A WORD 23

dobj

nsubj compound

I preferred Los Angeles.
PRON VERB PROPN PROPN

FIGURE 1. Example of a dependency parse.

Let’s say we are interested in firm acquisitions. Imagine we want to filter out all the
business transactions (who bought whom) from a large corpus of newswire text. We
define a list of verbs that express acquisitions and want to find all the nouns associated
with these verbs. l.e., who is doing the acquiring (the subjects), or who is being
acquired (the objects). We want to end up with NOUN-VERB-NOUN triples that give
us the names of the firms and other entities involved in the acquisitions, as well as the
verb.

We have already seen that words can have different grammatical forms, i.e., parts of
speech (nouns, verbs, etc.) However, a sentence can have many words with the same
POS, and what a specific word means in a sentence depends in part on its grammatical
function. Sentence structure, or syntax is an essential field of study in linguistics, and
explains how words in a sentence hang together.

One of the most important cues to a word’s function in English is its position in the
sentence. In English, grammatical function is mainly determined by word order, while
other languages use markers on the words. Changing the word order changes the gram-
matical function of the word. Consider the difference between “Swimmer eats fish,”
and “Fish eats swimmer”. The subject (the entity doing the eating) and the object (the
entity being eaten) are now switched. We have already seen verbs, subjects, and ob-
jects as examples of syntactic functions, but there are many other possible dependency
relations that can hold between words. The idea in dependency grammar is that the
sentence “hangs” off the main verb like a mobile. The links between words describe
how the words are connected. You can see an example in Figure 1.

Naturally, these connections can vary quite a bit between languages, but simi-
lar to the Universal POS tags, there have been efforts to unify and limit the set of
possibilities (McDonald et al., 2013; Nivre et al., 2015, 2016, inter alia). Here is
a list of the ones used in the Universal Dependencies project (again, see https:
//universaldependencies.org):

grammatical func-
tion
syntax

subject
object
dependency relations

24

acl, clausal modifier of a noun (adjectival clause)
advcl, adverbial clause modifier
advmod, adverbial modifier

amod, adjectival modifier

appos, appositional modifier

aux, auxiliary verb

case, case marker

cc, coordinating conjunction
ccomp, clausal complement

clf, classifier

compound, compound

conj, conjunction

cop, copula

csub j, clausal subject

dep, unspecified dependency

det, determiner

discourse, discourse element
dislocated, dislocated elements
dobj, direct object

expl, expletive

fixed, fixed multiword expression
flat, flat multiword expression
goeswith, goes with

iobj, indirect object

list, list

mark, marker

nmod, nominal modifier

nsub j, nominal subject

nummod, numeric modifier

obj, object

obl, oblique nominal

orphan, orphan

parataxis, parataxis

pob j, prepositional object

punct, punctuation
reparandum, overridden disfluency
root, the root of the sentence, usually a verb
vocative, vocative

xcomp, open clausal complement

Many of these might never or rarely occur in the language we study, and for many
applications, we might only want to look at a small handful of relations, e.g. the core

1

A}

w N =

O 3 o U1 P>

11
12
13
14
15
16
17
18
19
20

2. WHAT’S IN A WORD 25

arguments, nsub j, obj, iobj, pobj, or root. We can see an example of a depen-
dency parse in Figure 1. Why is this relevant? Because knowing where a word stands
in the sentence and what other words are related to it (and in which function), helps us
make sense of a sentence.

In Python, we can use the parser from the spacy library to get

[[(c.text, c.head.text, c.dep_) for c in nlp(sentence.text)]
for sentence in nlp (documents) .sents]

CODE 11. Parsing.
For the first sentence, this gives us

[('"T', 'been', 'nsubj'),
("'ve", 'been', 'aux'),
('been', 'been', 'ROOT'"),
('2', 'been', 'npadvmod'),
('"times', '2', 'quantmod'),
('"to', '2', 'prep'),
("New', 'York', 'compound'),
('York', 'to', 'pobij'),
('"in', 'been', 'prep
('2011', 'in', 'pobj
(',', 'been', 'punct'
(
(
(
(
(
(
(
(
(

) s
) s
)

4

|l
1

'but', 'been', 'cc'),

'did', 'have', 'aux'),

'not', 'have', 'neg'),

'have', 'been', 'conj'),

'the', 'constitution', 'det'),
'constitution', 'have', 'dobij'),
'for', 'have', 'prep'),

'it', 'for', 'pobj'),

'.', 'been', 'punct')]

We can see how the verb “been” is the root node that everything else hangs off of. For
our example with the firm acquisitions, we would want to extract anything labeled with
nsubj, dob7j, or pobj.

2.6. Caveats — What if it’s not English? Say you have a whole load of Italian
data that you want to work with, doing some of the things we have done in the previous
sections. What are your options?

spacy comes with support for a number of other languages, including German
(de), Spanish (es), French (fr), Italian (it), Dutch (nl), and Portuguese (pt). All
you have to do is load the correct library:

26

import spacy
nlp = spacy.load('it"')

However, you need to download these language models separately and make sure they
are in the right path. They mostly offer all the same functionalities (lemmatization, tag-
ging, parsing). However, their performance can vary. Because NLP has been so focused
on English, there is often much less training data for other languages. Consequently, the
statistical models are often much less precise.

NLP was developed predominantly in the English-speaking world, by people
working on English texts. However, English is not like many other languages. It is a
pidgin language between Celtic, old Germanic languages, Franco-Latin, and Norse, and
at some point it lost most of its inflections (the word endings that we learn in declension
tables). However, word endings allow you to move the word order around: you still
know from the endings what the subject and what the object is, no matter where they
occur. To still distinguish subject from object, English had to adopt a fixed word order.
Because of this historical development, n-gram methods work well for English: we see
the same order many times can get good statistics over word combinations. We might
not see the same n-gram more than once in-languages that are highly inflected or have
variable word order — no matter how large our corpus is. Finnish, for example, has 15
cases, i.e., many more possible word endings, and German orders subordinate clauses
differently from main clauses. For those languages, lemmatization becomes even more
important, and we need to rely on syntactic n-grams rather than sequences.

Alternatively, n1tk offers support to stem text in Danish, Dutch, English, Finnish,
French, German, Hungarian, Italian, Norwegian, Portuguese, Romanian, Russian,
Spanish, and Swedish. This method is, of course, much coarser than lemmatization, but
it is an efficient way to reduce the noise in the data.

There are programs out there to tag and parse more languages, most notably the
TreeTagger algorithm, which can be trained on data from the Universal POS project.
However, those programs involve some manual installation and command-line running
that go beyond the scope of this book.

If you are working with other languages than English, you can, in many cases,
still lemmatize the data. However, you might have fewer or no options for POS tagging,
parsing, and NER. For the applications in the following sections, though, adequate
preprocessing is often more important than being able to perform all types of linguistic
analyses. However, if your analysis relies on these tools, take a look at the NLP
literature on low-resource language processing, a thankfully growing subfield in NLP.

3. REPRESENTING TEXT 27

3. Representing Text

Say you have collected a large corpus of texts on political agendas and would like
to work with it. As a human, you can just print them out, take a pen, and start to take
notes. But how do you let a computer do the same?

To work with texts and gain insights, we need to represent the documents in a
way for the computer to process it. We cannot simply take a Microsoft Word document
and work with that. (Word documents are great for writing but terrible to analyze,
since they store a lot of formatting information along with the content.) Instead, we
need to get it into a form that computers can understand and manipulate. Typically,
this is done via representing documents as feature vectors. Vectors are essentially
lists of numbers, but they have several useful properties that make them easy to
work with. The domain of working with vectors and matrices is linear algebra. We
will use many of the concepts from linear algebra, so it can be good to refresh your
knowledge. A good place to start is the YouTube channel 3BluelBrown, which has a
dedicated series on the topic (https://www.youtube.com/playlist?list=
PLZHQObOWTQDPD3MizzM2xVFitgF8hE_ab). Lang (2012) is a great textbook.
We will only cover the basics here. Vectors can either represent a collection of discrete
features, or a collection of continuous dimensions. Discrete features characterize
a word or a document (in which case they are called discrete representations).
The dimensions of distributed representations represent the word or document
holistically, i.e., their position relative to all other words or documents in our corpus.

In discrete feature vectors, each dimension of the vector represents a feature with a
specific meaning (e.g., the fifth dimension means whether the word contains a vowel or
not). The values in the vector can either be binary indicator variables (0 or 1) or some
form of counts. Discrete representations are often also referred to as sparse vectors,
because not every document will have all the features. For the most part, these vectors
are empty (e.g., a document might not contain the word tsk!, so the corresponding
position in the vector will be empty). We will see discrete and sparse vectors when we
look at bags of words, counts, and probabilities in section 3.2.

In distributed or continuous representations, vectors as a whole represent points in a
high-dimensional space, i.e., by a vector of fixed dimensionality with continuous-valued
numbers. The individual dimensions of the vectors do not mean anything anymore, i.e.,
they can not be interpreted. Instead, they describe the coordinates of a document relative
to all other documents in the vector space. These vector representations are also called
dense, because we do not have any empty positions in the vectors, but will always have
some value in each position. When the vectors represent words or documents, these
high-dimensional, dense vector representations are called embeddings (because they
embed words or documents in the high-dimensional space). We will see distributed
representations when we look at word and document embeddings in Section 3.3.

feature vectors

linear algebra

discrete features
continuous dimen-
sions

discrete representa-
tions

distributed represen-
tations

sparse

dense

embeddings

matrices and vectors

term-document ma-
trix

data matrix

column vector
row vector

28

3.1. Enter the Matrix. After you choose how to represent each document in your
corpus, you end up with a bunch of vectors. Put those vectors on top of each other, and
you have a matrix. Let’s talk about some of the terminology.

LATA
M ATRIX

o
e

v
PR RoW 0F FEATURE
S -

- X — " UEcToR

INSTANCES

/\

| ELEMENT
O (sc ac a2 mumBER)

) \i\‘\ ~ -
FEATURES
OF

DPIMENSIONS

FIGURE 2. Elements of the data matrix.

Irrespective of the type of representation we choose (sparse or dense), it makes sense
to think of the data in terms of matrices and vectors. A vector is an ordered collection
of D dimensions with numbers in them. Each dimension is a feature in discrete vectors.
A matrix is a collection of N vectors, where each row represents one document, and the
columns represent the features mentioned above, or the dimensions in the embedding
space. This matrix is also sometimes referred to as term-document matrix (Manning
and Schiitze, 1999), reflecting the two elements involved in its construction. When we
refer to the data matrix in the following, we mean a matrix with one row for each
document, and as many columns as we have features or dimensions in our represen-
tation. If we want to look at one particular feature or dimension, we can thus extract
the corresponding column vector. And when we refer to a document, unless specified
otherwise, we refer to a row vector in the data matrix. See Figure 2 for an illustration
of these elements.

3. REPRESENTING TEXT 29

We generally refer to inputs to our algorithms with X, to outputs with Y. We
will use these uppercase symbols to refer to vectors. If the input is a single scalar
number, we use lowercase z or y. If we refer to a specific element of a vector, we will
use an index to refer to the position in the vector, e.g., x;, where ¢ is an integer € D
denoting the specific dimension. For matrices, we will use bold-faced uppercase X, and
denote individual elements with their row and column index: z; ;. Generally, we will
use ¢ € 1..N to iterate over the documents, and j € 1..D to iterate over the dimensions.

Thinking of the data this way allows us to use linear algebra methods. We can
now compute the linear combination of the data with some coefficients. Or we can
decompose the data, reduce their dimensionality, transform it, etc. Linear algebra also
allows us to combine the data with other kinds of information. For example, networks
can be represented as matrices, where each row and column represents a node, and
each cell tells us whether two nodes are connected (and if so, how strongly). Luckily,
Python allows us to derive matrix representations from text, and to use them in various
algorithms.

3.2. Discrete Representations. Suppose we have a corpus of documents, and have
preprocessed it so that it contains a vocabulary of 1000 words. We want to represent
each document as the number of times we have seen each of these 1000 words in a docu-
ment. How do we collect the counts to make each document a 1000-dimensional vector?

The simplest way of quantifying the importance of a particular word is to count
its occurrences in a document. Say we want to track the importance of a particular issue
(say, “energy”) for a company in their quarterly reports. Getting the term frequency
of the (lemmatized) word can give us a rough impression of its importance over time.
There is evidence that our brain keeps track of how often you have seen or heard a word
as well. Well, kind of. You can immediately tell whether you have seen the word “dog”
more frequently than the word “platypus”, but maybe not how often.

inputs
outputs
scalar

term frequency

Zipf’s law

30

50000

40000

30000

20000

10000

I
0

FIGURE 3. Frequency distribution of the top 1000 words in a random
sample of tweets, following Zipf’s law.

There are other frequency effects in language: not all words occur nearly at the
same frequency. One thing to notice for word counts is their overall distribution. The
most frequent word in any language is typically several times more frequent than the
second most frequent word. That word, in turn, is magnitudes more frequent than
the third most frequent word, etc., until we reach the “tail” of the distribution. That
tail is a long list of words that occur only once (see Figure 3). This phenomenon
(which is a power-law distribution) was first observed by Zipf (1935), and is therefore
often referred to as Zipf’s law. It also holds for city sizes, income, and many other
socio-cultural phenomena. It is, therefore, essential to keep in mind that methods
that assume a normal distribution do not work well for many, if not most, linguistic
problems. Zipf’s law also means that a small minority of word types account for the
majority of word tokens in a corpus.*

“More than half of all word tokens in a newspaper belong to a tiny group of word types. Unfortu-
nately, those are usually not the informative word types. Which is why learning vocabulary is such an
essential part of any language.

N

(€2 BTSN OV]

Sw NN

3. REPRESENTING TEXT 31

@
counT WorpsS &
e
{ @ @
'shakespeare': 6, o Lo . 51
'in': 20, R
'"love': 6, 6 ...20 6
'is': ...
} X

VECTORIZE FEATURES

FIGURE 4. Schematic of a bag-of-words representation

One of the most important choices we have to make when working with texts is how
to represent our input X. The most straightforward way to represent a document is
simply to create a count vector. Each dimension represents one word in our vocabulary,
so D has the size of all words in our vocabulary V, i.e., D = |V|. We then simply
count for each document how often each word occurs in it. This representation (a count
vector) does not pay any attention to where in the document a word occurs, what its
grammatical role is, or other structural information. It simply treats a document as a
bunch of word counts, and is therefore called a bag of words (or BOW, see Figure 4).
The result of this application to our corpus is a count matrix.
In Python, we can collect counts with a function in sklearn:

from sklearn.feature_extraction.text import CountVectorizer

vectorizer = CountVectorizer (analyzer='word")

X = vectorizer.fit _transform(documents)

CODE 12. Extracting n-gram count representations.

3.2.1. n-gram Features. In addition to individual words, we would also like to
account for n-grams of lengths 2 and 3, to capture both word combinations and some
grammatical sequence effects in our representations. We want to be able to see the
influence of ‘“‘social media” as well as “social” and “media.” (We will see later, in
section 6, how to preprocess such terms to make them a single token.)

N-grams are sequences of tokens (either words or characters), and the easiest
way to represent a text is by keeping track of the frequencies of all the n-grams in the
data. Luckily, CountVectorizer allows us to extract all n-gram counts within a
specified range.

from sklearn.feature_extraction.text import CountVectorizer

vectorizer = CountVectorizer (analyzer='word',

ngram_range= (1, 3),

count vector

bag of words
count matrix

ul

O 00 J O

g w N

(o)}

~J

O 0

o

32

min_df=10,
max_df=0.75,
stop_words='english')

X = vectorizer.fit_transform(documents)

CODE 13. Extracting n-gram count representations.

In the code in snippet 13, we create a vectorizer that collects all word unigrams,
bigrams, and trigrams. To be included, these n-grams need to occur in at least ten
documents, but not in more than 75% of all documents. We exclude any words that are
contained in a list of stopwords.

The exact m-gram range, minimum and maximum frequency, and target entity
("word’ or ' char’, for character) depend on the task, but sensible starting settings
are

word_vectorizer = CountVectorizer (analyzer='word',

ngram_range= (1, 2),

min_df=10,
max_df=0.75,
stop_words='english')
char_vectorizer = CountVectorizer (analyzer='char',
ngram_range= (2, 6),

min_df=10,
max_df=0.75)

Using character n-grams can be useful when we look at individual words as docu-
ments, or if we are dealing with multiple languages in the same corpus. /N-grams also
help account for neologisms (new word creations), and misspellings. From a linguistic
perspective, this approach may seem counterintuitive. However, from an algorithmic
perspective, character n-grams have many advantages. Many character combinations
occur across languages (e.g., “en””), so we can make them comparable even if we cannot
use the appropriate lemmatization. N-grams capture overlap and similarities between
words better than a whole-word approach. This property can help us with both spelling
mistakes and new variations of words because they account for the overlap with the orig-
inal word. Compare the words definitely and its frequent misspelling definately. They
do have significant overlap, both in terms of form and meaning. Trigrams, for example,
capture this fact: seven of the nine unique trigrams we can extract from the two words
are shared. Their character count-vectors will be similar — despite the spelling variation.
In a word-based approach, these two tokens would not be similar. We usually only need
to store a limited number of all possible character combinations, because many do not
occur in our data (e.g., “qxq”). IN-grams are, therefore, also a much more efficient rep-
resentation computationally: there are much fewer character combinations than there
are word combinations.

(G2 BTSN w

[

N -

3. REPRESENTING TEXT 33

3.2.2. Syntactic Features. One problem with n-grams is that we only capture direct
sequences in the text. For English, this is fine, since word order is fixed (as we have dis-
cussed), and grammatical constituents like subjects and verbs are usually close together.
As a result, there are enough word n-grams that frequently occur to capture most of the
variation. The fact that NLP was first developed for English and its strict word order
might explain the enduring success of n-grams.

However, as we have seen, word order in many languages is much freer than it is in
English. That means that subjects and verbs can be separated by many more words, and
occur at different positions in the sentence. For example, in German,

“Sie sagte, dass [der Kochl,ominative [dem Girtner],ipe [die
Bienen] ccusative gegeben hatte”

(She said that [the chef],ominative had given [the bees | ,ccysative t0 [the gardener] jqtive,
noun cases marked with subscript) could also be written as:

“Sie sagte, dass [dem Girtner]gqt. [die Bienenl,ceysative [der
Koch],ominative gegeben hatte”

“Sie sagte, dass [die Bienen],ccysative [dem Girtner]y e [der
Koch],ominative gegeben hatte”

and various other orderings. Not all of them will sound equally natural to a German
speaker (they might seem grammatically marked). Still, they will all be grammati-
cally valid and possible. In those cases, it is hard to collect sufficient statistics via
n-grams, which means that similar documents might look very different as representa-
tions. Instead, we would want to collect statistics/counts over the pairs of words that are
grammatically connected, no matter where they are in the sentence.

In Python, we can use the dependency parser from spacy to extract words and their
grammatical parents as features, as we have seen before. We simply extract a string of
space-separated word pairs (joined by an underscore), and then pass that string to the
CountVectorizer, which treats each of these pairs as a word:

from sklearn.feature_extraction.text import CountVectorizer

features = [' '".join(["{}_{}".format (c.lemma_, c.head.lemma_) for c
in nlp(s.text)])
for s in nlp (documents) .sents]

vectorizer = CountVectorizer ()
X = vectorizer.fit_transform(features)

CODE 14. Extracting syntactic feature count representations.
For example, the counts for the first sentence in our examples (“I’ve been 2 times to
New York in 2011, but did not have the constitution for it”’) would be

{'have_be': 2,
'-PRON—_be': 1,

marked

term frequency

document frequency

DSW

(@)

~J O

o

34

'be_be': 1,
'2_be': 1,
'time_2"': 1,
"te_2"s 1,
'new_york': 1,
'vork_to': 1,
'in_be': 1,

) '2011_in': 1,

', _be': 1,

'but_be': 1,
'do_have': 1,
'not_have': 1,
'the_constitution': 1,

> 'constitution_have': 1,

'for_have': 1,

3 '-PRON—-_for': 1,

'._be': 1}

3.2.3. TF-IDF Counts. Count vectors are a good start, but they give equal weight
to all terms with the same frequency. However, some terms are just more “interesting”
than others, even if they have the same or fewer occurrences. Let us say we have 500
companies, and for each of them several years’ worth of annual reports. The collected
reports of each company are one document. We will not be surprised to find the words
“report” or “company” among the most frequent terms, since they are bound to be used
in every document. However, if only some of those companies use ‘“sustainability”,
but do so consistently in every report, this would be a very interesting signal worth
discovering. How could we capture this notion?

When we first look at a corpus, we usually want to know what it is generally
about, and what terms we might want to pay special attention to. Frequency alone is
not sufficient to find important words: many of the stopwords we purposely remove
are extremely frequent. However, there is something about word frequency that carries
information. It is just not the raw frequency of each word.

The answer is to weigh the raw frequency (its term frequency, or TF) by the
number of documents the word occurs in (its document frequency, or DF). This way,
words that occur frequently, but in every document (such as function words), will
receive very low scores. So will words that are rare, but could occur everywhere (say,
“president” in our example: it is not frequent, but will be mentioned by every report).
Words that are moderately frequent but occur in only a few documents get the highest
score, and these words are what we are after. We can get both of these quantities from a
discrete count matrix. The TF is the sum over the corresponding column of the matrix,
while the DF is the count of the non-zero entries in that column (see Figure 5).

3. REPRESENTING TEXT 35

FEATURE

| ,:'is"«e-ﬁ\\
m\\\pw UMENT
X FrequEncy
| L-f_:// (Coun:
r“/

TERM FREQUENCY L

sumy. 7

FIGURE 5. Extracting term and document frequency from a count matrix

There are many ways to compute the weighting factor. In the most common one,
we check how many documents a term occurs in, and take its inverse, or the fraction
of all documents in our corpus that contain the word. (This quantity can be obtained by
counting the non-zero rows in the respective column of our count matrix.)

N
DF(w)
This is—quite sensibly—called the inverse document frequency (or IDF). Because we
often have large corpora and terms occur in only a few, the value of the IDF can get

very small, risking an underflow. To prevent this, we take the logarithm.’ The idea was
first introduced by Spérck Jones (1972).

IDF(w) = log

By multiplying the two terms together, we get the TF-IDF score of a word:
TFIDF(w)=TF(w) - IDF(w)

There are several variants to compute both TF and IDF. We can use Laplace smooth-
ing, i.e., we add 1 to each count, to prevent division by 0 (in case a term is not in the
corpus). Another possibility is to take the logarithm of the frequency to dampen fre-
quency effects. TF can be computed as a binary measure (i.e., the word is present in the

SYou might also see the IDF as —log D};\Ew) , which comes out to the same.

inverse

inverse document
frequency

36

document or not), as the raw count of the word, the relative count (divided by the length
of each document), or a smoothed version:

TFsmoothed = lOg(TF(’LU) + 1)

A smoothed version of the IDF is
log L +1
DF(w) +1
A common variant that implements smoothing and log discounting is

1
log(1 + —Dﬁw))

TFIDF(w) = (log TF(w) + 1) -

By plotting the IDF versus the TFIDF values, and scaling by the TF, we can see
how the non-stopwords in a corpus are distributed. Figure 6 shows the content words
in Moby Dick. The five words with the highest TFIDF scores are labeled. While the
prevalence of “whale” is hardly surprising (the TFIDF is dominated by the high TF, but
then, it’s a book about whales), we can see a couple of interesting entries to the right,
including the doomed protagonist Ahab, and the archaic form *“ye” (for “you”).

8 q
. tfidf

idf

chapter

ye

ahabman

‘hale
3 T T T T T T T

0 20 40 60 80 100 120 140
tfidf

FIGURE 6. Scatter plot of TFIDF and IDF values, scaled by TF, for
content words in Moby Dick

In Python, we canuse the TfidfVectorizerin sklearn, which functions very
much like the CountVectorizer we have already seen:

1
2

3. REPRESENTING TEXT 37

from sklearn.feature_extraction.text import TfidfVectorizer

tfidf_vectorizer = TfidfVectorizer (analyzer='word',
min_df=0.001,
max_df=0.75,
stop_words='english',
sublinear_tf=True)

X = tfidf_vectorizer.fit_transform(documents)

CODE 15. Extracting TFIDF values from a corpus.

This returns a data matrix with a row for each document, and the transformed values
in the cells. We can get the IDF values from the 1df__ property of the vectorizer. In
order to get the TFIDF values of a certain feature for the entire corpus, we can sum over
the all rows/documents. The A1 property turns the sparse matrix into a regular array:

idf = tfidf_vectorizer.idf_
tfidf = X.sum(axis=0) .Al

CODE 16. computing IDF and TFIDF values for features.

3.2.4. Dictionary Methods. In many cases, we already have prior knowledge about
the most important words in a domain, and can use those as features. This knowledge
usually comes in the form of word lists, codebooks, or dictionaries, mapping from a
word to the associated categories. Several sources and tools exist for applying such
dictionary methods to text, especially in the field of psychology, such as LIWC (Pen-
nebaker et al., 2001). They come with additional benefits, such as the functionality of
scoring texts along several dimensions, such as emotions, psychological traits, etc.

dictionary methods

synonyms

38

) Twitter

vocabulary

FIGURE 7. Vocabulary overlap between dictionary-based methods and
target domain.

While it can be handy to use such a dictionary to get started, it is essential to note that
dictionary-based methods have inherent limitations. Their vocabulary and the vocabu-
lary we find in the data will only partially overlap (see Figure 7). In practice, this means
that whatever is in the dictionary is a perfect candidate (we have high precision in our
selection). However, we might miss out on many indicative words because they were
not included in the dictionary (our selection has a low recall of all the possible features).
Given how flexible language is, it is challenging to cover all possible expressions in a
dictionary (Schwartz et al., 2013).

A handy approach is expanding a dictionary-based method with some of the meth-
ods discussed here, to expand the dictionary. You can, for example, use the Wordify
tool (https://wordify.unibocconi.it) to find more terms related to the dic-
tionary categories. This approach will give us bona fide features and will pick up data-
specific features. We can substantially extend our initial word list and “customize” it to
the data at hand by choosing automatically derived features that strongly correlate with
the dictionary terms.

3.3. Distributed Representations. Many times, we would like to capture the
meaning similarity between words, such as for synonyms like “flat” and “apartment”.
We might also be interested in their general relatedness in semantic terms. E.g.,
“doctor,” “syringe,” and “hospital” all tend to appear in the same context. For example,
to capture language change, we might be interested in capturing the most similar words

to “mouse” over time (Kulkarni et al., 2015; Hamilton et al., 2016). Or we might want

3. REPRESENTING TEXT 39

to measure stereotypes by seeing how similar to each other “nurse” is with “man” and
“woman”, respectively (Garg et al., 2018).

This semantic relatedness of context (called distributional semantics) was rec-
ognized early on in linguistics by Firth (1957), who stated that

“You shall know a word by the company it keeps.”

So far, we have treated each word as a separate entity, i.e., “expenditure” and “ex-
penditures” are treated as two different things. We have seen that this is why preprocess-
ing is so important (in this case, lemmatization) because it solves this problem. How-
ever, preprocessing does not adequately capture how similar a word is to other words.
Distributed representations allow us to do all of these things, by projecting words (or
documents) into a high-dimensional space where their relative position and proximity
to each other mean something. I.e., words that are similar to each other should be close
together in that space. In discrete representations, we defined the dimensions/features,
hoping that they capture semantic similarity. In distributed representations, we use con-
textual co-occurrence as the criterion to arrange words in the given space. Similarity is
now an emerging property of proximity in the space. First, though, we need to be more
specific by what we mean with similar to each other.

3.3.1. Cosine Similarity. When we are searching for “flats in milan” online, we
will often get results that mention “apartments in milan” or “housing in milan”. We
have not specified these two other words, but they are obviously useful and relevant.
We often get results that express the same thing, but in different words. Intuitively,
these words are more similar to each other than to, say, the word “platypus”. If we
want to find the nearest neighbors, we need a way to express this intuition of semantic
similarity between words in a more mathematical way.

For all of the above, the key question is: what does it mean for words to be
“similar to each other”. Remember that our words are vectors. A vector is nothing but
a point specified in the embedding space. So in distributed representations, our words
are points in a D-dimensional space. We can draw a line from the origin (i.e., the 0
coordinates) of the space to each point. This property allows us to compute the angle
between two words, using the cosine similarity of two vectors. The angle is a measure
of the distance between the two vectors.

To get the cosine similarity, we first take the dot product between the two vectors,
and normalize it by the norm of the two vectors:

D

aibi
iz &
IATIB]

cos(A, B) =

distributional
semantics

origin

cosine similarity

nearest neighbors

1
2
2

9

4

~J o U

40

The dot product is simply the sum of all pairs of elements multiplied together, and the
norm is the square root of the sum over all squared elements. The reason we first square
each element and then compute the root is that this gets rid of negative values. So when
we sum the numbers up, we end up with a positive number.

Cosine similarity gives us a number between —1.0 and 1.0. A negative value means
that the vectors point in diametrally opposite directions. In contrast, a value of 1.0
implies that the two vectors are the same. A value close to 0.0 means the two vectors
are perpendicular to each other, or uncorrelated with each other. It does not say that the
words mean the opposite of each other!

We can use cosine similarity to compute the nearest neighbors of a word, i.e., to
find out which words are closest to a target word in the embedding space. We do this by
sorting the vectors of all other words by their cosine similarity with the target. Ideally,
we would want the cosine similarity between words with similar meaning (“flat” and
“apartment”) and between related words (“doctor”, “syringe”, and ‘“hospital”) to be
high. The library we will use has a function to do so, but in some cases (e.g., when
averaging over several models), we will need to implement it ourselves:

import numpy as np
def nearest_neighbors(query_vector, vectors, n=10):
compute cosine similarities

ranks = np.dot (query_vector, vectors.T) / np.sqrt (np.sum(vectors
x%2, 1))

sort by similarity, reverse order, and get the top N

neighbors = [idx for idx in ranks.argsort () [::-1]1]1[:n]

return neighbors

CODE 17. Implementation of nearest neighbors in vector space.

Now we have clarified what it means for words to be similar to each other. The only
questions left are: How do we get all the words into a high-dimensional space? And
how do we arrange them by cosine similarity?

3.3.2. Word Embeddings.

3. REPRESENTING TEXT 41

o 90Yo 5

ga'ylgs ndmosexua
talkative .’V. gilylgs}[)
healthy
couraggous transgender
philanthropist
T e 9aY gy statesmandays
cheerfu dapper o
spanic
S e sorcerers .
profligate artisans

unembarrassed metonymy

0.4

FIGURE 8. Position and change over time of the word “gay” and its
nearest neighbors, from Kulkarni et al. (2015)

Let’s say we are interested in the changing meaning of words over time (see Figure 8).
What did people associate with a word in the early 1900s? Does that differ from its
present-day meaning (Kulkarni et al., 2015; Hamilton et al., 2016)? What were people
associating with gender roles, ethnic stereotypes, and other psychological biases during
different decades (Garg et al., 2018; Bhatia, 2017)? A distributed representation of
words from different times allows us to discover these relations by finding the nearest
neighbors to a word under different settings.

Following the distributional hypothesis, for words to be similar to each other,
they should occur in similar contexts. I.e., if we often see the same two words within
a few steps from each other, we can assume that they are semantically related. For
example, “doctor”, and “hospital” will often occur together in the same documents,
sometimes within the same sentence, and are therefore semantically similar. If we see
two words in the same slot of a sentence, i.e., if we see them interchangeably in the
same context, we can assume they are semantically similar. For example, look at the
slots in the sentences “I only like the gummy bears” and “There was a vase with
___flowers”. Both can be filled with “red” or “yellow” (or “blue”, or...), indicating that
colors are syntactically similar. Unfortunately, the same is true for antonyms. “I had a
___weekend” can be completed by a wide range of adjectives, but that does not mean
that “boring” and “amazing” mean similar things.

Traditionally, distributed representations were collected by defining several context
words. For each target word in the vocabulary, we would then count how often it
occurred in the same document as each of the context words. This approach is known as
the vector space model. The result was essentially a discrete count matrix. The counts

semantically related

semantically similar

antonyms: words that

mean the opposite

context words

vector space model

Latent Semantic
Analysis

word2vec

continuous bag of
words (CBOW)
model

skipgram model

42

were usually weighted by TF-IDF, to bring out latent similarities, and then transformed
by keeping only the k& highest eigenvalues from Singular Value Decomposition. The
method to produce these dense representations is called Latent Semantic Analysis
or LSA (Deerwester et al., 1990). Distributional semantic models like LSA used the
entire document as context. I.e., we would count the co-occurrence of the target with
context words anywhere in the entire text. In contrast, modern embedding models
define context as a local window to either side of the target word.

Some years ago, a new tool, word2vec (Mikolov et al., 2013), made headlines
for being fast and efficient in projecting words into vector space, based on a large
enough corpus. Rather than relying on a predefined set of context words to represent
our target word, this algorithm uses the natural co-occurrence of all words to compute
the vectors. (Co-occurrence means the words occur within a particular window size,
rather than the whole document.) We only specify the number of dimensions we want
to have in our embedding space, and press go.

The intuitive explanation of how the algorithm works is simple. You can imagine
the process similar to arranging a bunch of word magnets on a giant fridge. Our goal
is to arrange the word magnets so that proximity matches similarity. I.e., words in
similar contexts are close to each other, and dissimilar words are far from each other.
We initially place all words randomly on the fridge. We then look at word pairs: if we
have seen them in the same sentence somewhere, we move them closer together. If they
do not occur in the same sentence, we increase the distance. Naturally, as we adjust a
word to be close to one of its neighbors, we move it further away from other neighbors.
So we need to iterate a couple of times over our corpus before we are satisfied with the
configuration.

On a fridge, we only have two dimensions in which to arrange the words, which
gives us fewer options for sensible configurations. In word2vec, we can choose a
higher number, which makes the task easier, as we have many more degrees of freedom
to find the right distances between all words. Initial proposals included 50 or 100
dimensions, but for some unknown reason, 300 dimensions seem to work well for most
purposes (Landauer and Dumais, 1997; Lau and Baldwin, 2016).

There are two main architectures to implement this intuitive “moving magnets on
a fridge” and updating the resulting positions of the vectors: CBOW and the skipgram
model. The algorithm iterates over each document in the corpus, and carries out a
prediction task. It selects an input word w and a second, output word ¢ from the
vocabulary. It then tries to predict the output from the input. In practice, we can either
predict the output word from the input of context words (this is called the continuous
bag of words (CBOW) model, see Figure 9), or predict the context word output from
the target word input, which is called skipgram model (see Figure 10). Skipgram is
somewhat slower, but considered more accurate for low-frequency words.

3. REPRESENTING TEXT

oVTPUT

/Np(/f‘i rent | | large | |great | |Iocation|

Renting out large apartment in great location

FIGURE 9. Schematic of Word2vec model with CBOW architecture
for 5 words with two dimensions. Context word vectors in blue, target
word vector in white.

| rent | | large | | great | |Iocation|

INPUT

Renting out large apartment in great location

43

negative sampling
hierarchical softmax

softmax

44

FIGURE 10. Schematic of Word2vec model with skipgram architec-
ture for 5 words with two dimensions. Context word vectors in blue,
target word vector in white.

In either case, we keep separate matrices for the target and context versions of each
word, and discard the output matrix in the end. lLe., in the CBOW model, we delete
the target word matrix, in the skipgram model, we remove the context word matrix.
For more details on this, see the explanations by Rong (2014) or Goldberg and Levy
(2014).

To update the output word matrices, we need to consider the whole vocabulary,
which can be quite large (up to hundreds of thousands of words). There are two
algorithms to make this efficient: negative sampling and hierarchical softmax. Both
help us update the vast number of words in our vocabulary in an efficient manner.

In negative sampling, the model chooses a random sample of context words c. These
words are labeled either 1 or -1, depending on whether they occur within a fixed window
either side of the target word w. The model computes the dot product of the input and
output vectors and checks the sign of the result. If the prediction is correct, i.e., the sign
1s positive, and ¢ does indeed occur in the context of w, or if the sign is negative and v
does indeed not occur in the context of w, nothing happens. If the prediction is incorrect,
1.e., the predicted sign differs from the label, the model updates the selected vectors. If
we iterate this process often enough, words that occur within a certain window size of
each other get drawn closer and closer together in the vector space.

Given an input word, we can check for a few sampled words, whether they occur
in that word’s context. However, we can instead also predict the output probability of
all vocabulary words. Then we choose the word with the highest probability as the
prediction. This probability distribution is called a softmax. Unfortunately, though,
our vocabulary is usually quite large. Computing the softmax for every input word over
all output words involves an exponential number of comparisons. The time complexity
of this computation becomes quickly prohibitive. The hierarchical softmax addresses
this problem. We build a tree on top of our vocabulary, starting with each vocabulary
word as a leaf node. We then combine leaf nodes to form higher layers of nodes until
we have a single root node. We can use this tree to get the prediction probabilities,
and only need to update the paths through this tree to compute the probabilities. This
structure cuts the number of necessary computations by a large factor (the logarithm
of the vocabulary size). For a much more in-depth explanation and derivation of the
methods, see Rong (2014).

The quality of the resulting word vectors depends — as always — on the quality
of the input data. One common form of improving quality is to throw out stop words
or, rather, to keep only content words. We can achieve this through POS information.
Adding POS also disambiguates the different uses of homonyms, e.g., “show_NOUN”
vs. “show_VERB”.

[T
N P O W 00 1 o U i W N -

14
15
16

17

3. REPRESENTING TEXT 45

There are many pre-trained word embeddings available, such as GloVe (Pennington
et al., 2014) or Fasttext (Grave et al., 2018), among others. They are based on vast
corpora, and in some cases, embeddings exist for several languages in the same embed-
dings space, making it possible to compare across languages. If we are interested in
general societal attitudes, or if we have tiny data sets, these pre-trained embeddings
are a great starting point.

In other cases, we might want to train embeddings on our corpus ourselves, to cap-
ture the similarities which are specific to this data collection. In the latter case, we can
use the word2vec implementation in the gensim library. The model takes a list of
list of strings as input.

from gensim.models import Word2Vec
from gensim.models.word2vec import FAST_VERSION

initialize model

w2v_model = Word2Vec (size=300,
window=5,
hs=0,
sample=0.000001,
negative=5,
min_count=10,
workers=-1,
iter=5000

w2v_model .build_vocab (corpus)

w2v_model.train (corpus, total_examples=w2v_model.corpus_count, epochs
=w2v_model .epochs)

CODE 18. Initializing and training a word2vec model.

We need to pay attention to the parameter settings. The window size determines whether window size
we pick up more on semantic or syntactic similarity. The negative sampling rate and negative

the number of negative samples affect how much frequent words influence the overall
result (hs=0 tells the model to use negative sampling). As before, we can specify a
minimum number of times a word needs to occur to be embedded. The number of
threads on which to train (workers=-1 tells the model to use all available cores to
spawn off threads, which speeds up training). The number of iterations controls how
often we adjust the words in the embeddings space.

Note that there is no guarantee that we find the best possible arrangement of words,
since word embeddings start randomly and are changed piecemeal. Because of this
stochastic property, it is recommended to train several embedding models on the same
data, and then average the resulting embedding vectors for each word over all of the
models (Antoniak and Mimno, 2018).

pre-trained embed-

dings

rate

sampling

=

vector space seman-
tics

relational similarity
prediction

Sw N

= O W o J o Ul

46

We can access the trained word embeddings via the wv property of the model.

wordl = "clean"
word2 = "dirty"
retrive the actual vector

w2v_model .wv [wordl]

compare
w2v_model.wv.similarity (wordl, word2)

get the 3 most similar words
w2v_model.wv.most_similar (wordl, topn=3)

CODE 19. Retrieving word vector information in the trained Word2vec
model.

The resulting word vectors have several neat semantic properties (similarity of
meaning), which allow us to do vector space semantics. The most famous example
of this is the gender analogy of king — man + woman = queen. If we add the vectors
of “king” and “woman” and then subtract the vector of “man”, we get a vector that is
quite close to the vector of the word “queen.” (In practice, we need to find the nearest
actual word vector of the resulting vector.) Other examples show the relationship be-
tween countries and their capitals, or the most typical food of countries. These tasks are
known as relational similarity prediction.

1 # get the analogous word

2 w2v_model .wv.most_similar (positive=['king', 'woman'], negative=['man'

]

CODE 20. Doing vector semantics with the trained word2vec model.

3.3.3. Document Embeddings. Imagine we want to track the language variation in
a country city by city: how does the language in A differ from that in B? We have data
from each city, and would like to represent the cities on a continuous scale (dialects
in any language typically change smoothly, rather than abruptly). We can think of
document embeddings as a linguistic profile of a document, so we could achieve our
goal if we manage to project each city into a higher dimensional space based on the
words used there.®

Often, we are not interested in representing individual words, but in representing

“This is precisely the idea behind the paper by Hovy and Purschke (2018), who find that the resulting
city representations not only capture the dialect continuum (which looks nice on a map), but that they are
also close in embedding space to local terms, and can be used in prediction tasks.

3. REPRESENTING TEXT 47

an entire document. Previously, we have used discrete feature vectors in a BOW
approach to do so. However, BOW vectors only count how often each word was
present in a document, no matter where they occur. The equivalent in continuous
representations is taking the aggregate over the word embeddings in a document. We
concatenate the word vectors row-wise into a matrix [, and compute either the mean
or the sum over all rows:

weD

ZwED e(w)
D]

However, we can also use a similar algorithm to what we have used before to learn
separate document embeddings. (Le and Mikolov, 2014) introduced a model similar to
word2vec to achieve this goal. The original paper called the model paragraph2vec,
but it is now often referred to with the name of the successful gensim implementation,
doc2vec.

or

e(D) =

OUTRUT

0000/0000/0000)0000)

Doc0001

INPUT

FIGURE 11. Doc2Vec model with PV-DBOW architecture

Initially, we represent each word and each document randomly in the same
high-dimensional vector space, albeit with separate matrices for the documents and
words. We can now either predict target words based on a combined input of their
context plus the document vector (similar to the CBOW of word2vec). This model
architecture is called the Distributed Memory version of Paragraph Vector (PV-DM).
Alternatively, we can predict context words based solely on the document vectors (this

document embed-
dings
paragraph2vec

doc2vec

48

is called Distributed Bag of Words version of Paragraph Vector, or PV-DBOW, see
Figure 11). The latter is much faster in practice and more memory-efficient, but the
former structure is considered more accurate.

The Python implementation in gensim, doc2vec, is almost identical to the
word2vec implementation. The main difference is that the input documents need
to be represented as a special object called TaggedDocument, which has separate
entries for words and tags (the document labels). Note that we can use more than
one label! If we do not know much about our documents, we can simply give each of
them a unique ID (in the code below, we use a 4-digit number with leading zeroes,
1.e., 0002 or 9324). However, if we know more about the documents (for example,
the political party who wrote them, or the city they originated from, or their general
sentiment), we can use this.

from gensim.models import Doc2Vec
from gensim.models.doc2vec import FAST_VERSION
from gensim.models.doc2vec import TaggedDocument

corpus = []

for docid, document in enumerate (documents) :
corpus.append (TaggedDocument (document .split (), tags=["{0:0>4}".
format (docid) 1))

d2v_model = Doc2Vec (size=300,
window=5,
hs=0,
sample=0.000001,
negative=5,
min_count=10,
workers=-1,
iter=5000,
dm=0,
dbow_words=1)

d2v_model .build_vocab (corpus)

> d2v_model.train (corpus, total_examples=d2v_model.corpus_count, epochs

=d2v_model .epochs)

CODE 21. Training a Doc2vec model.

The parameters are the same as for word2vec, with the addition of dm, which decides
the model architecture (1 for distributed memory (PV-DM), O for distributed bag of
words (PV-DBOW)), and dbow_words, which controls whether the word vectors are
trained (1) or not (0). Not training the word vectors is faster. doc2vec stores separate

3. REPRESENTING TEXT 49

embedding matrices for words and documents, which we can access via wv (for the
word vectors) and docvecs.

1 target_doc = '0002"'

2

3 # retrieve most similar documents

4 d2v_model.docvecs.most_similar (target_doc, topn=5)

In general, doc2vec provides almost the same functions as word2vec.

e Schwedenplatz

e jodelconfession

bissig ur o Wien
0 ¢ e o leiwand
oida

o herst®
o heast

-1 o deppat
e lOCO
-2 -1 0 1 2 3 4

FIGURE 12. Example of documents (cities) and words in the same em-
bedding space from Hovy and Purschke (2018). The words closest to the
city vector are dialect terms.

Projecting both word and document embeddings into the same space allows us to
compare not just words to each other, which can tell us about biases and conceptual-
izations. It also allows us to compare words to documents, which can tell us what a
specific document is about (see example in Figure 12). And of course, we can compare
documents to documents, which can tell us which documents are talking about similar

things. For all of these comparisons, we use the nearest neighbor algorithm (see Code
17).

3.4. Discrete vs. Continuous. Which representation we choose depends on several
things, not least the application.

Discrete representations are interpretable, i.e., they can assist us in finding a (causal)
explanation of the phenomenon we investigate. The dimensions are either predefined by

rationalism
empiricism

50

us, or based on the (most frequent or informative) words in the corpus. Each dimension
means something, but many of them will be empty. A discrete data matrix is a bit like a
Swiss cheese.

Continuous representations are only interpretable as a whole. The central criterion
is similarity (as measure by distance), the individual dimensions have no meaning any
more — they are chosen by us, but filled by the algorithm. Almost every cell will be
non-zero, so a continuous data matrix is more like a brie than a block of Swiss cheese.

The difference between representations is also similar to the intended use, mirrored
in two schools of thought: rationalism and empiricism.7 In the first, we would like
a model that helps us understand how the world works, and make sure the model is
interpretable. In the second case, we want a model that performs well on a task, even if
we do not understand how it does so. Ultimately, though, we need both approaches to
make scientific progress.

’See also Peter Norvig’s excellent blog post about the difference in scientific approaches to machine
learning: http://www.norvig.com/chomsky.html

4. REGULAR EXPRESSIONS 51

Now that we have seen what the basic building blocks of linguistic analysis are, we
can start looking at extracting information out of the text. We will see how to search
for flexible patterns in the data to identify things like email addresses, company names,
or numerical amounts in section 4. Then, we will look at how we can gauntify the
information in language, by using probability distributions and entropy (section 5). In
section 3.2.3, we will see how to find the most meaningful and important words in a
corpus (given that pure frequency is not a perfect indicator). And in section 6, we will
see how to capture that some words occur much more frequently together than on their
own, and how to define this notion.

4. Regular Expressions

Say you are working with a large sample of employment records from Italian em-
ployees, with detailed information about when they worked at which company, and a
description of what they did there. However, the names of the companies are contained
in the text, rather than in a separate entry. You want to extract the names to get a rough
overview of how many different companies there are and to group the records accord-
ingly. Unfortunately, the NER tool for Italian does not work as well as you would like.
You do know, though, that Italian company names often end in several abbreviations
(similar to “Co.”, “Ltd.”, or “Inc.”). There are only two you want to consider for now
(“s.p.a.” and “s.r.1.”), but they come in many different spelling variations (e.g., SPA, spa,
S.PA., etc.). How can you identify these markers and extract the company names right
before them?

In the same project, you have collected survey data from a large sample of
employees. Some of them have left their email address as part of the response, and you
would like to spot and extract the email addresses. You could look for anything that
comes before or after an @-sign, but how do you make sure it is not a Twitter handle?
And how do you make sure it is a valid email address?®

String variation is a textbook application of regular expressions (or RegEXx).

They are flexible patterns that allow you to specify what you are looking for in general,
and how it can vary. In order to do so, you simply write the pattern you want to match.

sequence | matches

e any single occurrence of e
at at, rat, mat, sat, cat, attack, attention, later
TABLE 1. Examples of simple matching.

8With “valid”, we don’t mean whether it actually exists (you could only find out by emailing them),
but only whether it is correctly formatted (so that you actually can email them).

regular expressions
patterns

quantifiers

classes

groups

g s w N

52

In Python, we can specify regular expressions and then apply them to text with
either search () ormatch (). The former checks whether a pattern is contained in
the input, the latter checks whether the pattern completely matches the input:

import re

pattern = re.compile("at")
re.search (pattern, 'later') # match at position (1, 3)
re.match (pattern, 'later') # no match

Sometimes, we know that a specific character will be in our pattern, but not how
many times. We can use special quantifiers to signal that the character right before
them occurs any number of times, including zero (*), exactly one or zero times (?), or
one or more times (+). See examples in Table 2.

quantifier ‘ means ‘ example ‘ matches
? Oorl fr?og | fog, frog
* 0 or more | cooo*1 | cool, coool
+ lormore | hello+ | hello, helloo, helloocooocoo

TABLE 2. Examples of quantifiers.

In Python, we simply incorporate them into the patterns:

patternl = re.compile("fr?og")
pattern2 = re.compile ("hello+")
pattern3 = re.compile ("cooox1")

REs also provide a whole set of special characters to match certain types of charac-
ters or positions (see Table 3).

However, maybe we don’t want really any old character in a wildcard position,
only one of a small number of characters. For this, we can define classes of allowed
characters.

In Python, we can use character classes to define our patterns (see also the examples
in Table 4):

pattern = re.compile (' [bcr]at')

So far, we have only defined single characters and their repetitions. However,
RegExes also allow us to specify entire groups, as shown in Table 5:

In order to apply REs to strings in Python, we have several options. We can
match () input strings, which will only succeed if it can cover the entire string. If
we are only interested in whether the pattern is contained as a substring, we can use
search () instead.

4. REGULAR EXPRESSIONS 53
character | means | example | matches
. any single character el eel, Nel, gel
\n newline character (line break) | \n+ One or more line breaks
\t a tab stop \t+ One or more tabs
\d a single digit [0-9] B\d BO, B1, ., B9
\D a non-digit \D.t " t, But, eat
\w any alphanumberic character | \w\w\w | Top, WOO, bee,..
\W non-alphanumberic character
\'s a whitespace character
\'S a non-whitespace character
\ “Escapes” special characters | . +\.com | abc.com,
to match them united.com
- the beginning of the input| ~ First 3-letter word in line
string
$ the end of the input string “\n$ Empty line
TABLE 3. Examples of special characters.
class ‘ means ‘ example ‘ matches
[abc] |Matchanyofa, b, c [bcrms]at bat, cat, rat,
mat, sat
[“abc] | Match anything BUT a, |te[”]+s tens, tests,
b, c teens, texts,
terrors...
[a-z] |Match any lowercase | [a-z] [a=z]t |act, ant, not,
character ... Wit
[A-Z] |Match any wuppercase | [A-Z]... Ahab, Brit, In a,
character ., York
[0-9] | Match any digit DIN A[0-9] DIN A0, DIN Al,
., DIN A9
TABLE 4. Examples of character classes.
group | means | example | matches
(abc) | Match sequence abc . (ar) . hard, cart, fare..
(ab|c) | Match ab OR ¢ (ab|C)ate | abate, Cate

1 document

TABLE 5. Examples of groups.

'the batter won the game'

54

matches = re.match (pattern, document) # returns None
searches = re.search (pattern, document) # matches 'bat'’

Either of these operations return an object that is None if the pattern could not be ap-
plied. Otherwise, it will provide us with several properties of the results: span ()
gives us a tuple of the substring positions that match the pattern (and which can be used
as indices for slicing), while group () returns the matched substring. For our exam-
ple above, searches.span () will return (4, 7), while searches.group ()
returns ' bat’. If we define several groups in our pattern, we can access them via
groups (), either jointly or individually.

1 word = 'preconstitutionalism'

2 affixes = re.compile(' (...).+(...)")

3 results = re.search(affixes, word)
Here, results.groups () will return the prefix and the suffix found in the input,
ie., ("pre’, ’'ism’).

Lastly, we can also use the RegEx to replace elements of the input string that match
the pattern via sub (). We have mentioned earlier how we can replace the digits of any
number with a special token, for example 0. The following code does this:

1 numbers = re.compile('[0-9]")
2 re.sub (numbers, '0O', 'Back in the 90s, when I was a l1l2-year-old, a CD

cost just 15,99EUR!")

CODE 22. Replacing patterns in a string.

The code in 22 will return
"Back in the 00s, when I was a 00-year-old, a CD cost
Jjust 00, 00EUR!’.

A warning: regular expressions are extremely powerful, but you need to know
when to stop. A well-written RegEx can save you a lot of work, and accomplish
quite a bit in terms of extracting the right bits of text. However, RegExes can quickly
become extremely complicated when you add more and more variants that you would
like to account for. It’s very easy to write a RegEx that captures way too much (false
positives), or is so specific that it captures way too little (false negatives). It is therefore
always a good idea to write a couple of positive and negative examples, and make sure
the RegEx you develop matches what you want.

5. Entropy

In 1948, Claude Shannon published a groundbreaking paper, “A Mathematical The-
ory of Communication”. In it, Shannon proposed that all communication could be
boiled down to a simple concept: sending messages from one point to another. This
idea may seem trivial, but Shannon’s paper was groundbreaking because it showed that

5. ENTROPY 55

all communication systems, whether telegraphs, telephones, or computers, could be an-
alyzed using the same mathematical framework. The central concept is that of entropy:
a measure of the amount of information in a message or the uncertainty you have about
it. Allegedly, coming up with this insight involved a lot of games of hangman with his
wife. How come?

Hangman, or more contemporary Wordle, are great examples of entropy. In the
most general sense, entropy is a measure of disorder or uncertainty in an information
context. The more disorder, the higher the entropy. In the context of guessing a word,
the more possible ways to complete a guess to form actual words, the higher the entropy.
In Wordle, you have six tries to guess a five-letter word. After each guess, you are told
for each character in your guess whether it is not in the target word (grey), in the target
word but in a different position (yellow), or in that position in the target word (green).
In the beginning, you know nothing about the target word, so the entropy is very high.
But note that even before this first guess, you already have some information based on
the fact that the target is an English word: any words with the letters S, A, L, E, T,
or R are much more likely than any words with Q or X. As you guess more and more
letters, the entropy decreases because the number of possible words you can still form
decreases. But entropy also helps us to quantify how complicated the solutions are. If
you have the pattern _OUND, you could complete it with W, R, P, S, F, H, B, or M
to form possible English words. In contrast, for the pattern SOUN_, the only possible
English word that completes it is the letter D. The entropy is much higher in the first
case than in the second case.

The most important notion here is the probability of a word.” One way to think
about a word’s probability is this: if we opened a very large book and randomly pointed
at one word, how often would it be the one we are looking for? In practice, you would
count how often each word appears in the huge book and then divide by the total number
of words. The result is‘a (usually very, very small) number between 0 and 1.'° If the
following sentence was all you had, the word “good” appears 2 times in 10 words.

A good word is a word that has good characters

So the probability of “good” is 0.2, or 2 divided by 10. The bigger the book, the
more accurate the probability will be (if your book has only one page, you probably
won’t see all the words in a language, and most of them will only occur once). Today,
that book is essentially the entire Internet, so we have a pretty good estimate. However,
the numbers are also really, really, really small. We can take their logarithm to make
it easier to work with them. For our purpose, the logarithm is a function that makes
small numbers larger and larger numbers smaller, so it’s a squashing function. There
are different types of logarithms, but we use the one with base 2: Shannon wanted to

The famous linguist Noam Chomsky once grumpily declared that this notion made no sense. It
might not be in a day-to-day sense, but in a model, it absolutely does, as we will see.

1911 science, people use these small numbers, e.g., 0.9. In common writing, we would use percent-
ages. To get from probability to percentages, you multiply by 100. So probability 0.9 means a 90%
chance.

entropy

56

quantify how many binary bits you would need to encode something. I.e., how many
binary switches would you need to turn on and off (i.e., bits) to assign a unique sequence
to each word? The logarithms tells us how many bits we would need. In this case, 2.3.
We then multiply the two parts, the probability and its logarithm, and because taking the
logarithm gives us a negative number, so we also have to take its absolute value. That
whole process can be written more succinctly as'’

H(x) = —p(x)logap(x)

Shannon had previously showed how the on-and-off switches in computers could be
used to express logical true or false. With entropy, he could say how many combinations
of switches we would need to encode, say, English. Entropy can generally be used to
compute how many words/tokens/characters/signs we need to express all possible inputs
efficiently. Essentially, entropy measures how much information can be squeezed into a
text. By understanding the entropy of a language, we can encode and decode messages
more efficiently.

This insight also makes intuitive sense from a linguistic perspective: we want to be
able to express a lot of different things, but we don’t want to make it too difficult for our
friends to understand us. A language with only one word for everything would be as
difficult or useless in that respect as a language with a unique word for each and every
possible concept.

To summarize, the probability of a word is a measure of how often it appears com-
pared to all other words. We can calculate this probability by counting the number of
times it appears in a large sample and then dividing that by the total number of words.
The result is a number between 0 and 1, which we can then convert to bits by taking the
logarithm. Entropy is highest when all words are equally likely (i.e., when we cannot
reasonably guess which comes next) and lowest if only one option exists (because you
don’t have to guess).

6. Pointwise Mutual Information

Intuitively, we would like to treat terms like “social media”, “New York™, or
“greenhouse emission” as a single concept, rather than treating them as individual units
delimited by white space. However, just looking at the frequency of the two words
together is not sufficient. The word pair “of the” is extremely frequent, but nobody
would argue that this is a single meaningful concept. To complicate matters more, each
part of these often also occurs by itself. Think of the elements in “New York™ (while
“York” is probably not too frequent, “New” definitely is). Leaving these words apart or
joining them will have a huge impact on our findings. How do we join the right words
together?

Word is a squishy concept, though. We have seen that whitespaces are more of
an optional visual effect than a meaningful word boundary (e.g., Chinese does not

11Entropy is traditionally denoted with H.

6. POINTWISE MUTUAL INFORMATION 57

use them). Even the (in)famous German noun compounds (”’Nahrungsmittelet-
tikierungsgesetz”, or "law for the labeling of food stuffs”’) can be seen as just a more
whitespace-efficient way of writing the words.

Even in English, we have concepts that include several words, but that we would not
(anymore) analyze as separate components. Think of place names like “Los Angeles”
and “San Luis Obispo”, but also concepts like “social media”. (If you disagree on the
latter, that is because the process, called grammaticalization, is gradual, and in this
case not fully completed.) While it is still apparent what the parts mean, they have
become inextricably linked with each other. These word pairs are called collocations.

When we work with text, it is often better to treat collocations as one entity, rather
than as separate units. To do this, we usually just replace the white space between
the words with an underscore (i.e., we would use 1los_angeles). There are some
“general” collocations (like “New York™ or “Los Angeles”). However, nearly every
domain includes specialized concepts relevant to the context of our analysis. For
example, “quarterly earnings” in earnings reports, or “‘great service” if we are analyzing
online reviews.

We can compute the probability of each word occurring on its own, but this does
not help much: “New” is much more likely to occur than “York”. We need to relate
these quantities to how likely the two words are to occur together. If either (or all) of
the candidate words occur in the context of the others, we have reason to believe it is a
collocation. E.g., “Angeles” in the case of “Los Angeles”. If, on the other hand, either
word is just as likely to occur independently, we probably do not have a collocation.
E.g., “of” and “the” in “of the.”

To put numbers to this intuition, we use the joint probability of the entire n-gram
occurring in a text and normalize it by the individual probabilities (for more on proba-
bilities, see Appendix 1). Since the probabilities can get fairly small, we typically use
the logarithm of the result. So, for a bigram we have

P(z,y)
P(z)P(y)

Joint probabilities can be rewritten as conditional probabilities, i.e.,

P(x,y) = P(y) x P(z|ly) = P(z) x P(y|z)

PMI(z;y) = log

The last two parts are the same because we don’t care about the order of x and y. So if
it’s more convenient, we can transform our PMI calculation into

Plxly)

PMI(z;y) = log P@)

or

PMI(x;y) = log

grammaticalization

collocations

joint probability

preprocessing

w N

o U1

[EERY
= O W 00

=
N

58

Essentially, the latter tells us for a bigram “zy” how likely we are to see = followed
by y (i.e., P(y|x)), normalized by how likely we are to see y in general (P(y)).

Applying collocation detection to an example corpus in Python is much easier,
since there are some functions implemented in nltk that save us from computing all
the probability tables:

from nltk.collocations import BigramCollocationFinder,
BigramAssocMeasures
from nltk.corpus import stopwords

stopwords_ = set (stopwords.words ('english'))

words = [word.lower () for document in documents for word in document.
split ()
if len(word) > 2
and word not in stopwords_]
finder = BigramCollocationFinder.from words (words)
bgm = BigramAssocMeasures ()
collocations = {bigram: pmi for bigram, pmi in finder.score_ngrams (
bgm.mi_like) }
collocations

CODE 23. Finding collocations with n1tk.

The code first creates a long list of strings from the corpus, removing all stopwords
and words shorter than 2 characters (thereby removing punctuation). It then creates
a BigramCollocationFinder object, initialized with the word list. From this
object, we can extract the statistics. Here, we use a variant of PMI, called mi_1like,
which does not take the logarithm, but uses an exponent.

Table 6 shows the results for the text sample from Moby Dick. We can then set a
threshold above which we concatenate the words.

All of the last few sections are examples of preprocessing, to get rid of noise
and unnecessary variation, and to increase the amount of signal in the data.

All of these steps can be combined, so we get a much more homogenous, less noisy
version of our input corpus. However, there is no general rule of what steps to exclude
and which to keep. For topic models (see section 4), removing stopwords is crucial.
However, for other tasks, such as author attribute prediction, the number and choice of
stopwords, such as pronouns, is essential. We might not need numbers for sentiment
analysis, so we can either remove them or replace them with a generic number token.
However, we would definitely want to keep all numbers if we are interested in tracking
earnings.

6. POINTWISE MUTUAL INFORMATION 59

RANK | COLLOCATION | MI(z;y)

1 moby_dick 83.000000
2 sperm_whale | 20.002847
3 mrs_hussey 10.562500
4 mast_heads 4.391153
5 sag_harbor 4.000000
6 vinegar_cruet 4.000000
7 try_works 3.794405
8 dough_boy 3.706787
9 white_whale 3.698807
10 caw_caw 3.472222

TABLE 6. MI values and rank for a number of collocations in Moby Dick

Ultimately, which set of preprocessing steps to apply is highly dependent on the
task and the goals. It makes sense to try out different combinations on a separate, held-
out development set, and observe which one gives the best results. More importantly,
preprocessing decisions always change the text, and thereby affect the inferences we
can make. We need to be aware of this effect, and we should justify and document all
preprocessing steps and decisions we have taken Denny and Spirling (2018).

Part 11

Exploration
Finding Structure in the Data

latent dimensions

matrix factorization

Latent Semantic
Analysis (LSA)

collaborative filter-
ing

We will now look at ways to visualize the information we have (section 1) and
to group texts together into larger clusters (section 2), before we turn to probabilistic
models. We discuss how to spot unusual or creative sentences (and potentially generate
our own) in section 3; and how to find the most important themes and topics (via topic
models) in section 4.

1. Matrix Factorization

Let’s say you have run Doc2Vec on a corpus and created an embedding for each
document. You would like to get a sense of how the documents as a whole relate to each
other. Since embeddings are points in space, a graph sounds like the most plausible
idea. However, with 300 dimensions, this is a bit hard. How can you reduce the 300
down to 2 or 37 You would also like to visualize the similarity between documents
using colors: documents with similar content should receive similar colors. Is there a
way to translate meaning into color?

The data we collect from our count or TFIDE vectorizations is a sample of ac-
tual language use. These are the correlations we have observed. However, language is
complex and has many latent dimensions. Various factors influence how we use words,
such as societal norms, communicative goals, broader topics, discourse coherence, and
many more. If we think of the word and document representations as mere results of
these underlying processes, we can try and reverse-engineer the underlying dimensions.

Finding these latent factors is what matrix factorization tries to do: the methods
we will see try to represent the documents and the terms as separate entities, connected
through the latent dimensions. We can interpret the latent dimensions as a variety of
things, such coordinates in a 2 or 3-dimensional space, RGB color values, or (if we
have more than 3) as “topics”.

This view was incredibly popular in NLP in the 1990 and into the early 2000s,
thanks to a technique called Latent Semantic Analysis (LSA), based on matrix decom-
position. The resulting word and document matrices were used for all kinds of semantic
similarity computations (between words, between documents), for topics, and for visu-
alization. However, there are now specialized techniques that provide a more concise
and flexible solution for everything LSA was used for. Word embeddings (see sec-
tion 3.3), document embeddings (ibd.), topic models (see section 4), and visualization
methods like t-SNE (see below). However, it is still worth understanding the principles
behind it, as they can provide a quick and efficient way to analyze data. Matrix fac-
torization is still widely used in collaborative filtering for recommender systems. For
example, to suggest movies people should watch based on what they and people similar
to them have watched before.

1.1. Dimensionality Reduction. So far, the dimensionality D of our data matrix
X was defined by one of two factors. Either by the size of the vocabulary in our data

1. MATRIX FACTORIZATION 63

(in the case of sparse vectors), or by a pre-specified number of dimensions (in the case
of distributed vectors).

However, there are good reasons to reduce this number. The first is that 300 di-
mensions are incredibly hard to imagine and impossible to visualize. However, to get a
sense of what is going on in the data, we often do want to plot it. So having a way to
project the vectors down to two or three dimensions is very useful for visualization.

The other reason is performance and efficiency: We might suspect that there is a
smaller number of latent dimensions that is sufficient to explain the variation in the
data. Reducing the dimensionality to this number can help us do a better analysis and
prediction. The patterns that emerge can even tell us what those latent dimensions were.

In the following, we will look at two dimensionality-reduction algorithms. We can
represent the input data as either sparse BOW vectors or dense embedding vectors. Note
that using dimensionality reduction to k factors on a D-dimensional embedding vector
is not the same as learning a k-dimensional embedding vector in the first place. There is
no guarantee that the £ embedding dimensions are the same as the latent dimensions we
get from dimensionality reduction. Matrix decomposition relies on feature-based input
to find a smaller subset. A feature of this approach on document representation matrices
is that earlier dimensions are more influential than later ones. At the same time, the
embedding-based techniques make use of the entire set of dimensions.

1.1.1. Singular Value Decomposition. Singular Value Decomposition (SVD) is
one of the most well-known matrix factorization techniques. It is an exact decomposi-
tion technique based on eigenvalues. The goal is to decompose the matrix into three
elements:

Xn><m = Unxkskxk(vmxk)T

where X is a data matrix of n documents and m terms, U is a lower-dimensional matrix
of n documents and k latent concepts, S (sometimes also confusingly written with the
Greek letter for it, 3, which can look like a summation) is a k-by-%£ diagonal matrix
with non-negative numbers on the diagonal (the principal components, eigenvalues, or
“strength” of each latent concept) and Os everywhere else, and V7 is a matrix of m
terms and k latent concepts.'

If we matrix-multiply the elements together, we can get a matrix X’. This ma-
trix has the same number of columns and rows as X, but it is filled with new values,
reflecting the latent dimensions. I.e., X’ contains as many features as our chosen
number of latent dimensions, and the rest is comprised of zeros.

In Python, SVD is very straightforward:

from sklearn.decomposition import TruncatedSVD

Note that officially, the decomposition is UanSnXm(Vme)T, which is then reduced to k by
sorting the eigenvalues and setting all after the kth to 0. However, this is not aligned with the Python
implementation.

visualization

latent dimensions

Singular Value De-
composition (SVD)

eigenvalues

Principal Compo-
nent Analysis

Non-Negative
Matrix Factorization

oo w N

o

g w N

k = 10

svd = TruncatedSVD (n_components=k)
U = svd.fit_transform(X)

S = svd.singular_values_

V = svd.components_

CODE 24. SVD decomposition into 10 components.

SVD is related to another common decomposition approach, called Principal Com-
ponent Analysis (PCA), where we try to find the main dimensions of variation in the
data. SVD is one way to do PCA, since the singular values can be used to find the di-
mensions of variation. PCA can be done in other ways, too, but SVD has the advantage
over other methods that it does not require us to have a square matrix (i.e., the same
number of rows and columns).

1.1.2. Non-Negative Matrix Factorization. Non-Negative Matrix Factorization
(NMF) fulfills a similar role as SVD. However, it assumes that the observed n-by-m
matrix X is composed of only two matrices, W and H, which approximate X when
multiplied together. W is a n-by-k matrix, i.e., it gives us a lower-dimensional view
of the documents, and is therefore very similar to what we got from SVD’s U. H is a
k-by-m matrix, i.e., it gives us a lower-dimensional view of the terms. It is, therefore,
very similar to what we got from SVD’s V. The big differences from SVD are that
there is no matrix of eigenvalues, nor any negative values. NMF is also not exact, so
the two solutions will not be the same.

In Python, NMF is again very straightforward.

from sklearn.decomposition import NMF

nmf = NMF (n_components=k, init="'nndsvd', random_state=0)
W = nmf.fit_transform(X)

H = nmf.components_

CODE 25. Applying NMF to data.

The initialization has a certain impact on the results, and using Nonnegative Double
Singular Value Decomposition (NNDSVD) helps with sparse inputs.

1.2. Visualization. Once we have decomposed our data matrix into the lower-
dimensional components, we can use them for visualization. If we project down into
2 or 3 dimensions, we can visualize them in 2D or 3D. An example are the clouds in
Figure 1: each point represents a song, colored by the genre. The graph immediately
shows that there is little to no semantic overlap between Country and Hip-hop. The
function for plotting this is given in Code 26 below.

1. MATRIX FACTORIZATION

e« Country
o HipHopRap

FIGURE 1. Scatter plot of document embeddings for song lyrics in 3D.

1 import matplotlib.pyplot as plt

2 from mpl_toolkits.mplot3d import Axes3D

3 from matplotlib import colors

4

5 def plot_vectors (vectors,

O J O

11
12
13
14
15
16

set up graph

title='VIZ',

fig = plt.figure(figsize=(10,10))

create data frame

labels=None,

df = pd.DataFrame (data={'x':vectors[:,0], 'y':
add labels, if supplied
if labels is not None:
labels

df['label']

print (df.label)
else:

df['label']

("'l

* len (df)

dimensions=3) :

vectors[:,1]1})

65

66

17

18 # assign colors to labels

19 cm = plt.get_cmap ('afmhot') # choose the color palette

20 n_labels = len(df.label.unique())

21 label_colors = [cm(l. » i/n_labels) for i in range (n_labels)]

22 cMap = colors.ListedColormap (label_colors)

23

24 # plot in 3 dimensions

25 if dimensions ==

26 # add z-axis information

27 df['z'] = vectors|[:,2]

28 # define plot

29 ax = fig.add_subplot (111, projection='3d")

30 framel = plt.gca()

31 # remove axis ticks

32 framel.axes.xaxis.set_ticklabels ([])

33 framel.axes.yaxis.set_ticklabels ([])

34 framel.axes.zaxis.set_ticklabels ([])

35

36 # plot each label as scatter plot in its own color

37 for 1, label in enumerate (df.label.unique()):

38 df2 = df[df.label == label]

39 ax.scatter(df2['x'], df2['y']l, df2['z'], c=label_colors[1l
], cmap=cMap, edgecolor=None, label=label, alpha=0.3, s=100)

40

41 # plot in 2 dimensions

42 elif dimensions ==

43 ax = fig.add_subplot (111)

44 framel = plt.gca()

45 framel.axes.xaxis.set_ticklabels([])

46 framel.axes.yaxis.set_ticklabels ([])

477

48 for 1, label in enumerate (df.label.unique()) :

49 df2 = df[df.label == label]

50 ax.scatter(df2['x'], df2['y'], c=label_colors[l], cmap=
cMap, edgecolor=None, label=label, alpha=0.3, s=100)

51

52 else:

53 raise NotImplementedError ()

54

55 plt.title(title)

56 plt.show ()

CODE 26. Making scatter plots of vectors in 2D or 3D, colored by label.

1. MATRIX FACTORIZATION 67

We can also use a projection into three dimensions to color our data: by interpret-
ing each dimension as a color channel in an RGB scheme, with the first denoting the
amount of red, the second the amount of green, and the third the amount of blue. We
then can assign a unique color triplet to each document. These triplets can then be
translated into a color (e.g., (0,0, 0) is black, since it contains no fraction of either red,
green, or blue). Documents with similar colors can be interpreted as similar to each
other. Since the RGB values have to be between 0 and 1, NMF works better for this
application, since there will be no negative values. However, the columns still have to
be scaled.

This approach was taken in Hovy and Purschke (2018), where the input matrix con-
sisted of document embeddings of text from different cities. By placing the cities on
a map and coloring them with the RGB color corresponding to the 3-dimensional rep-
resentation of each document vector, they created the map in Figure 2. It accurately
shows the dialect gradient between Austria and Germany, with Switzerland different
from either of them.

1.2.1. t+-SNE. While the previous two techniques work reasonably well for visual-
ization, they are essentially by-products of the matrix factorization. There is another
dimensionality reduction technique that was specifically developed for the visualization
of high-dimensional data. It is called t-SNE (t-Distributed Stochastic Neighbor Embed-
ding, Maaten and Hinton (2008)).

The basic intuition behind t-SNE is that we would like to reduce the number of di-
mensions to something plottable. At the same time, we want to maintain the similarities
between neighborhoods of points in the original high-dimensional space. lL.e., if two
instances were similar to each other in the original space, we want them to be similar to
each other in the new space. Also, they should be similar to their respective neighbors
in the original space. To achieve this, t-SNE computes the probability distributions over
all neighbors for a point in both dimensions. It then tries to minimize the difference be-
tween these two distributions. This effort amounts to minimizing the Kullback-Leibler
(KL) divergence, which measures how different two probability distributions are from
each other.

In practice, t-SNE can produce much more “coherent” visualizations that respect
the inherent structure of the input.data. E.g., the widely used MNIST data set is a
collection of actual hand-written numbers from letters, which is used to train visual
models. We would like to have all examples of hand-written 2s close together, no matter
their slant or size of the curve. At the same time, we want to have them separate from
all examples of 7s, which in turn should be close to each other. t-SNE can accomplish
that. However, the way t-SNE works is stochastic, so no two runs of the algorithm are
guaranteed to give us the same result. It also involves several parameters that influence
the outcome. It therefore requires some tuning and experimentation before we have a
good visualization.

1.3. Word descriptors. In both matrix factorization algorithms we have seen, the
input data is divided into at least two elements. First, a n-by-k matrix that can be thought

color channel

t-SNE

Kullback-Leibler
(KL) divergence

68

FIGURE 2. Visualization of documents from various German-speaking
cities, colored by RGB values (Hovy and Purschke, 2018)

of as the representation of the document representation in lower-dimensional space. In
SVD, this was U, in NMF W. Second, there was a k-by-n matrix that can be thought
of as the representation of the words in the lower dimensional space, if transposed.
However, if we are not transposing it, we can think of it as the affinity of each word
with each of the rows of k latent concepts. In SVD, this was V, in NMF H.

We can retrieve the five highest scoring columns for each of the &£ dimensions. The
words corresponding to these five columns ‘“‘characterize” each of the & latent dimen-
sions. These word lists are similar to a probabilistic topic model. In fact, they were its

1. MATRIX FACTORIZATION 69

precursors. However, again, these lists are only a by-product of the factorization. They
are not specifically designed with the structure of language in mind. The decomposition
solution determines the topics. If we do not like them, we do not have much flexibility
in changing them (other than rerunning the decomposition). Probabilistic topic models,
by contrast, offer all kinds of knobs and dials to adjust the outcome. Nonetheless, it is a
fast and easy way to get the gist of the latent dimensions, and can help us interpret the
factorization.

1 def show_topics(a, vocabulary, topn=5):

2 topic_words = ([[vocabulary[i] for i in np.argsort(t) [:-topn
-1:-17]

3 for t in a])

4 return [', '.join(t) for t in topic_words]

CODE 27. Retrieving the word descriptors for latent dimensions.

Here, a is the k-by-n matrix, vocabulary is the list of words (typically from the
vectorizer). For Moby Dick and k£ = 10, this returns

['ahab, captain, cried, captain ahab, cried ahab',
'chapter, folio, octavo, ii, iii',

'like, ship, sea, time, way',

'man, old, old man, look, young man',

'oh, life, starbuck, sweet, god',

1
2
3
4
5
6 'said, stubb, queequeg, don, starbuck',
7 'sir, aye, let, shall, think',

8 'thou, thee, thy, st, god',

9 'whale, sperm, sperm whale, white, white whale',
0

'yve, look, say, ye ye, men']

1.4. Comparison. The two algorithms are very similar, with only minor differ-
ences. Let’s directly compare them side by side. Table 1 compares them on a variety of
dimensions.

| SVD | NMF

Negative values (embeddings) as input? yes no
number of components | 3: U, S,V | 2: W, H
document view? | yes: U yes: W

term view? | yes: V yes: H
strength ranking? yes: S no
exact? yes no
"topic" quality mixed better
sparsity low medium

TABLE 1. Comparison of SVD and NMF.

70

What to ultimately use depends partially on the input and the desired applica-
tion/output we want, as shown in Table 2.

| Discrete Features | Embeddings

Latent topics NMF Not applicable
RGB translation NMF SVD + scaling
Plotting SVD t-SNE

TABLE 2. Comparison of SVD and NMF.

2. CLUSTERING 71

2. Clustering

Imagine you have a bunch of documents and suspect that they form larger groups,
but you are not sure which and how. For example, say you have texts from various
cities and suspect that these cities group together in dialect and regiolect areas. How
can you test this? And how do you know how good your solution is?>

Clustering is an excellent way to find patterns in the data even if we do not know
much about it, by grouping documents together based on their similarities. Imagine,
for example, that you have self-descriptions of a large number of companies. You are
trying to categorize them into a manageable number of industry sectors (technology,
biology, health care, etc). If you suspect that the language in the documents reflects
these latent properties, you can use clustering to assign the companies to the sectors.

Both clustering and matrix factorization try to find latent dimensions. However, the
critical difference is that matrix factorization is reversible (i.e., we can reconstruct the
input), while clustering is not.

ASSIGN CENTROIPS

X

initialize

ASSIEN POINTS RECOMPUTE
70 CENTEROIPS . CENTROIPS
2,
L]
o* oX o
ox o*
» o o °®
° .X °
L] []
5 . M-step

FIGURE 3. k-means clustering.

2.1. K-Means. K-Means is one of the simplest clustering algorithms. It chooses
k centroids of clusters (the means of all the document vectors associated with that

This is exactly the setup in Hovy and Purschke (2018). Spoiler alert: the automatically induced
clusters match existing dialect areas to almost 80%.

K-Means

centroids

agglomerative
clustering

linkage criterion
Ward clustering

average linkage cri-
terion
complete linkage cri-
terion

o U b W N

72

cluster). It then assigns each document a score according to how similar it is to each
mean.

However, we have a bit of a circular problem here: To know the cluster centroids,
we need to assign the documents to the closest clusters. But to know which clusters
the documents belong to, we need to compute their centroids... This situation is an
example of where the EM algorithm (Dempster et al., 1977) comes in handy.

Here is how we can solve it (see Figure 3):

(1) We start by randomly placing cluster centroids on the graph.

(2) Then, we assign each data point to the closest cluster, by computing the dis-
tance between the cluster centroids and each point.

(3) Lastly, we compute the centers of those new clusters and move the centroids to
that position.

We repeat the last two steps until the centroids stop moving around.
In sklearn, clustering with k-means is very straightforward, and it is easy to get
both the cluster assignment for each instance as well as the coordinates of the centroids.

from sklearn.cluster import KMeans

km = KMeans (n_clusters=10, n_jobs=-1)
clusters = km.fit_predict (X)
centroids = km.cluster_centers_

CODE 28. K-means clustering with 10 clusters, using all cores.

K-means is quite fast and scales well to large numbers of instances. However, it
has the distinct disadvantage of being stochastic. Because we set the initial centroids at
random, we will get slightly different outcomes every time we run the clustering. If we
happen to know something about the domain, we can instead use these points as initial
cluster centroids. For example, if we know that certain documents are good exemplars
of a suspected cluster, we can let the algorithm start from them.

2.2. Agglomerative Clustering. Rather than dividing the space into clusters and
assigning data points wholesale, we can also build clusters from the bottom up. We start
with each data point in its own cluster and then merge them, again and again, to form
ever-larger groups, until we have reached the desired number of clusters. This procedure
is exactly what agglomerative clustering does, and it often mirrors what we are after
in social sciences, where groups emerge, rather than spontaneously/randomly form.

The question here is, of course: how do we decide which two clusters to merge at
each step? This condition is called the linkage criterion. There are several conditions,
but the most common is called Ward clustering, where we choose the pair of clusters
that minimizes the variance. Other choices include minimizing the average distance
between clusters (called average linkage criterion), or minimizing the maximum dis-
tance between clusters (called complete linkage criterion). In sklearn, the default

w N =

[N

2. CLUSTERING 73
setting is Ward linkage.

from sklearn.cluster import AgglomerativeClustering

agg = AgglomerativeClustering(n_clusters=10, n_jobs=-1)
clusters = agg.fit_predict (X)

CODE 29. Agglomerative clustering of 10 clusters with Ward linkage.

Agglomerative clustering does not give us cluster centroids, so if we need them, we
have to compute them ourselves:

1 import numpy as np

2 centroids = np.array([X[clusters == c].mean(axis=0) .Al for c in range

(k) 1)

CODE 30. Computing cluster centroids for agglomerative clustering.

We can further influence the clustering algorithm by providing information about
how similar the data points are to each other before clustering. If we do that, clusters
(i.e., data points) that are more similar to each other than others are merged earlier.
Providing this information makes sense if our data points represent entities that are
comparable to each other. For example, similar documents (i.e., about the same topics),
people that share connections, or cities that are geographically close to each other. This
information is encoded in a connectivity matrix. We can express the connectivity in
binary form, i.e., either as 1 or 0. This hard criterion is telling the algorithm to either
merge or never merge two data points. This notion is captured by an adjacency matrix:
two countries either share a border, or they don’t. If instead, we use continuous values
in the connectivity matrix, we express the degree of similarity. Gradual similarity is the
case, for example, in expressing the distance between cities.

In sklearn, we can supply the connectivity matrix as a numpy array when initial-
izing the clustering algorithm, using connectivity.

agg = AgglomerativeClustering(n_clusters=10, n_jobs=-1, connectivity=
C)
clusters = agg.fit_predict (X)

CODE 31. Agglomerative clustering of 10 clusters with Ward linkage
and adjacency connectivity.

The only thing we need to ensure is that the connectivity matrix is square (i.e., it has
as many rows as columns), and the dimensionality of both is equal to the number of
documents, i.e., the connectivity matrix is a n-by-n matrix.

Figure 4 shows the effect of different clustering solutions on a data set from Hovy
and Purschke (2018)

connectivity matrix

adjacency matrix

74

52

50

48

46

a) b)

FIGURE 4. Example of clustering document representations of German-
speaking cities with k-means (a) and agglomerative clustering with a
distance matrix (b) into 11 clusters

2.3. Comparison. There are very clear trade-offs between the two clustering algo-
rithms, as shows in Table 3.

[k-means | agglomerative
scalable yes no (up to about 20k)
repeatable result no yes
include external info | sort-of (initialization) yes
good on dense clusters? no yes

TABLE 3. Comparison of k-means and agglomerative clustering.

Under most conditions, agglomerative clustering is the better choice. That is, until
we have too many instances (say, more than 20,000). In those cases, it can become
prohibitively slow, due to the many comparisons we have to make in each step. If we run
into this problem, we might use £-means. However, we can initialize it with the cluster
centroids derived via agglomerative clustering from a subset of the data. That way, we
get a bit of the best of both worlds: stable, repeatable results, and fast convergence.

N

o U1 b W

oo

1
2
3

2. CLUSTERING 75

2.4. Choosing the Number of Clusters. So far, we have only compared which
method is better for the data we have, but have quietly assumed that some outside factor
determines the number of clusters. In many cases, though, the exact number of clusters
is yet another parameter we need to choose.

To choose the optimal number of clusters, we can use various methods, each with
their pros and cons. Here, we will focus on the Silhouette method. We fit different
models with increasing numbers of clusters and measure the effect of the resulting so-
lution on the Silhouette score. We select the number of clusters with the highest score.
This score is composed of two parts. The first of them measures how compact each
cluster is (i.e., the average distance of each instance in a cluster to all of its other mem-
bers). The other score measures how well separated the individual clusters are (i.e., how
far away each instance is on average from the nearest example in another cluster). The
final metric is the average of this score across all cases in our data.

In practice, we can implement this as follows:

from sklearn.metrics import silhouette_score

scores = []

for n_clusters in range (20) :
agg = AgglomerativeClustering(n_clusters=n_clusters, n_jobs=-1)
clusters = agg.fit_predict (X)

scores.append (silhouette_score (X, clusters))

CODE 32. Computing the Silhouette score for 20 different models.
We can then select the number of clusters corresponding to the highest score.

2.5. Evaluation. To test the performance of our clustering solutions, we can com-
pare it to some known grouping (if available). In that case, we are interested in how
well the clustering lines up with the actual groups. We can look at this overlap from two
sides, and there are two metrics to do so: homogeneity and completeness.

Homogeneity measures whether a cluster contains only data points from a single
gold standard group. Completeness measures how many data points of a gold standard
group are in the same cluster. The difference is the focus. For the example of matching
dialect regions, homogeneity is high if a cluster occurs only in one region. At the same
time, completeness is high if the region contains only points from one cluster. Figure 5
shows an example of matching clusters to dialect regions.

We can also take a harmonic mean between the two metrics to report a single score.
This metric is called the V-score. It corresponds to the precision/recall/F1 scores com-
monly used in classification tasks.

from sklearn.metrics import homogeneity_completeness_v_measure

h, ¢, v = homogeneity_completeness_v_measure (known, clusters)

Silhouette method

homogeneity
completeness

V-score

76

Homogeneity Completeness
cluster has only 1 gold label gold label has only 1 cluster

> GoLD LABEL

s

<,‘\J‘ . {‘/) (KE&/ON) I /ﬁ. 'i"‘\ B
Good: ‘:o:L L/ '@ @
] \ .
°- 0‘ oh
,. . \j.
o ® i E \\
N A
o 5
,\J‘.\ <-_/
Bad: ‘® .l {. o
L
>0 - o\ Lo oh,
> “), ‘) af g
. . L R

FIGURE 5. Homogeneity and completeness metrics for clustering solu-
tions compared to a gold standard.

CODE 33. Computing homogeneity, completeness, and V-score for a
clustering solution against the known grouping.

3. LANGUAGE MODELS 77

3. Language Models

Imagine a copywriter has produced several versions of a text advertisement. We
want to investigate the theory that creative directors pick the most creative version of an
ad for the campaign. We have the different draft versions, we have the final campaign,
but how do we measure creativity? This is a big question, but if we just want a simple
measure to compare texts, we could rank which of the texts are most unusual, compared
to some standard reference. This is what language models do: for any text we give
them, they return a probability of how likely/unusual this text is (with respect to some
standard). In our example, we can use language models to assign each ad version a
probability. A lower probability roughly corresponds to a more creative text (or at least
one that is unlike most things we have seen). We can now check whether the texts with
the lowest probabilities are indeed the ones that are picked most often by the creative
director for the campaign, which would give us a way of measuring and quantifying
“creativity”.

The interesting question is of course: “How do we compute the probability of a
sentence?” There are indefinitely many possible sentences out there: you probably
have produced several today that have never been uttered before in the history of ever.
How would a model assign a probability to something infinitely large? We cannot
just count and divide: after all, any number divided by infinity is going to be 0. In
order to get around this problem, we divide a sentence into a sequence of smaller
parts, compute their probabilities, and combine them. Formally, a language model is a
probability function that takes any document S and a reference corpus ¢ and returns a
value between 0 and 1, denoting how likely S is to be produced under the parameters 6.

Language models have a long history in NLP and speech processing (Jelinek and
Mercer, 1980; Katz, 1987), because they are very useful in assessing the output qual-
ity of a system: it gives us a fast and easy way to rank the different possible outputs
produced by a chat bot, or the best translation from a machine translation system, or
a speech recognizer. Today, the best language models are based on neural networks
(Bengio et al.; 2003; Mikolov et al., 2010, inter alia), but they tend to require immense
amounts of data. For most of our purposes here, a probability-based n-gram language
model will work well.

More specifically, we will build a trigram LM based on Markov chains. Markov
chains are a special kind of weighted directed graphs that describe how a system
changes over time. Each state in the system is typically a point in discrete "time", so in
the case of language, each state is a word. Markov chains have been used for weather
prediction, market development, generational changes, speech recognition, NLP, and
many other applications. They are also the basis of HMMs (Hidden Markov Models)
and CRFs (Conditional Random Fields), which are widely used in speech recognition
and NLP. Lately, they have been replaced in many of these applications by neural lan-
guage models, which produce better output. However, probabilistic language models
based on Markov chains are a simple and straightforward model to assess the likelihood

language models

Markov chains

weighted
graphs

directed

Markov assumption
Markov order

78

of a document, and to generate short texts. In general, they assume that the probability
of seeing a sequence (e.g., a sentence) can be decomposed into the product of a series
of smaller probabilities:

N
P(wy,ws, ..., wy,) = H P(w;|wy, ... w;_1)

Le., the probability of seeing a sentence is the probability of seeing each word in the
sentence preceded by all others before it.

3.1. The Markov Assumption. In reality, this is a good idea. Each state or word
depends on a long history of previous states: the weather yesterday and the day before
influences the weather today, and the words you have read up to this one influence how
you interpret the whole sentence. Ideally, we want to take the entire history up to the
current state into account.

However, this quickly leads to exponentially complex models as we go on (just
imagine the amount of words we would have to keep in memory for the last words in this
sentence). The Markov assumption limits the history of each state to a fixed number of
previous states. This limited history is called the Markov order. In a Oth order model,
each state only depends on itself. In a first order model, each state depends on its direct
predecessor. In a second order model, each state depends on its two previous states.

Of course this is a very simplifying assumption, and in practice, the higher the order,
the better the model, but higher orders also produce sparser probability tables. And
while there are some cases of long-range dependencies (for example when to open and
close brackets around a very long sentence like this‘one), most of the important context
is in the context words right before our target (at least in English).

3.2. Trigram LMs. In atrigram LM, we use a second order Markov chain. We first
extract trigram counts from a reference corpus and then estimate trigram probabilities
from them. In practice, it is enough to store the raw counts and compute the probabilities
“on the fly”.

Actrigram (i.e., an n-gram with n = 3) is a sequence of 3 tokens, e.g., "eat more pie".
Or, more general: u v w. A trigram language model (or trigram model) takes a trigram
and predicts the last word in it, based on the first two (the history), i.e., P(w|u,v). In
general, the history or order of an n-gram model is n — 1 words. Other common n for
language models are 5 or 7. The longer the history, the more accurate the probability
estimates.

We will follow the notation in Mike Collins’ lecture notes.’ We are going to build a
trigram language model that consists of a vocabulary) and a parameter P(w|u,v) for
each trigram v v w. We will define that the last token in a sentence X is STOP, i.e.,
x,=STOP. We will also prepend n — 1 dummy token to each sentence, so we can count
the first word, i.e., in a trigram model, xy and x_; are set to *.

3http://www.cs.columbia.edu/~mcollins/lm—spring2013.pdf

N

W

3. LANGUAGE MODELS 79

We first have to collect the necessary building blocks (the trigram counts) for the
LM from a corpus of sentences. This corpus determines how good our LM is: bigger
corpora give us better estimates for more trigrams. However, if we are only working
within a limited domain (say, all ads from a certain agency), and want to rank sentences
within that, the size of our corpus is less important, since we will have seen all the
necessary trigrams we want to score.

Take the following sentence: * * eat more pie STOP The 3-grams we can
extract are

[("x', 'x', ‘eat'),

('«', 'eat', 'more'),
('eat', 'more', 'pie'),
("'more', 'pie', 'STOP')]

The * symbols allow us to estimate the probability of a word starting a sentence
(P(wlx*, %)), and the STOP symbol allows us to estimate what words end a sentence.

3.3. Maximum likelihood estimation (MLE). The next step is to get from the
trigram counts to a probability estimate for a word given its history, i.e., P(w|u,v).
We will here use the most generic solution and use maximum likelihood estimation.
We estimate the parameters of the statistical model that maximize the likelihood of the
observed data (which in practice simply translates into: count and divide). We define:

P(w|u,v) = e(u, v, w)
c(u,v)

where ¢(u,v,w) is the count of the trigram and c(u,v) the number of times the
history bigram is seen in the corpus.

Instead of actually storing both trigram and bigram counts, we can make use of the
fact that the bigrams are a subset of the trigrams. We can marginalize out the count
of a bigram from all the trigrams it occurs in;, by summing over all those occurrences,
using the following formula:

P, v) = c(uyv, w) _ c(u, v, w)
c(u,v) >, c(u,v, 2)
E.g., in'order to get the probability of P(STOP|more, pie), we count all trigrams start-
ing with “more pie”.

3.4. Probability of a Sentence. Now that we have the necessary elements of a
trigram language model (i.e., the trigram counts (u, v, w)) and a way to use these counts
to compute the necessary probabilities P(w|u, v), we can use the model to calculate the
probability of an entire sentence based on the Markov assumption. The probability of a
sentence is the product of all the trigram probabilities involved in it:

n

P(l‘h 713n> = HP@%‘%*%%A)

i=1

maximum likelihood
estimation

marginalize out

smoothing
discounting
linear interpolation

Laplace-smoothing

80

L.e., we slide a trigram window over the sentence, compute the probability for each
of them, and multiply them together. If we have a long sentence, we will get very small
numbers, so it is better to use the logarithm of the probabilities again:

n
lOg P(l’l, ceey l’n) = Z lOg P(a:i]xi,g, 1’1;1)
i=1
Note that when using logarithms, products become sums, and division becomes
subtraction, so the logarithm of the trigram probability can be in turn computed as

log P(w|u,v) = log c(u, v, w) — log Z c(u, v, 2)

3.5. Smoothing. If we apply the LM only to the sentences in the corpus we used to
collect the counts, we are done at this point. However, sometimes we want to compute
the probability of a sentence that is not in our original corpus (for example, if we want
to see how likely the sentences of another ad agency are).

Because language is so creative and any corpus, no matter how big, is limited, some
perfectly acceptable three-word sequences will be missing from our model. This means
that a large number of the possible n-grams will have a probability of 0 under our
model, even though they should really get a non-zero probability. This is problematic,
because any 0 count for a single trigram in our product calculation above would make
the probability of the entire sentence 0 from thereon out, since any number multiplied
by 0 is, well, 0:

P(x1,....,2,) = P(x1| %%) - P(xo}*x1)-0-...=0.0

Therefore, we need to modify the MLE probability computation to assign some
probability mass to new, unseen n-grams. This is called smoothing. There are numer-
ous approaches to smoothing; i.e., discounting (reducing the actual observed frequency)
or linear interpolation (computing several n-grams and combining their weighted evi-
dence). There is a whole paper on the various methods (Chen and Goodman, 1996), and
it is still an area of active research.

The easiest smoothing, however, is Laplace-smoothing, also known as “add-1
smoothing”. We simply assume that the count of any trigram, seen or unseen, is 1,
plus whatever evidence we have in the corpus. It is the easiest and fastest smoothing to
implement, and while it lacks some desirable theoretical properties, it deals efficiently
with new words. So, for a trigram that contains an unseen word z, our probability
estimate becomes:

c(u,z,w)+1 0+1
clu,z) +1 Y, clu,z,2) + 1
Here, the resulting probability is 1, which seems a bit high for an unseen trigram.
We can reduce that effect by choosing a smaller smoothing factor, say, 0.001, i.e.,
pretending we have seen each word only a fraction of the time. As a result, unseen

P(w|u,x) =

[y
O W 0 J oy U b W N -

[
[

[Y
w N

14

15
16
17
18

3. LANGUAGE MODELS 81

trigrams will have a much smaller probability.

Putting everything above together in code, we can estimate probabilities for any
new sentence. Smoothing can be efficiently implemented by using the defaultdict
data structure, which returns a predefined value for any unseen key. By storing the
trigrams in a nested dictionary, we can easily sum over them to compute the bigram
counts:

from collections import defaultdict
import numpy as np
import nltk

smoothing = 0.001
counts = defaultdict (lambda: defaultdict (lambda: smoothing))

for sentence in corpus:
tokens = ['+x', '"x'] + sentence + ['STOP']
for u, v, w in nltk.ngrams (tokens, 3):
counts[(u, v)][w] += 1

def logP(u, v, w):
return np.log(counts[(u, v)][w]) - np.log(sum(counts[(u, v)].
values ()))

def sentence_logP (S) :
tokens = ['*"', '"x'] + S + ['STOP']

*
return sum([logP (u, v, w) for u, v, w in nltk.ngrams (tokens, 3)1)

CODE 34. A simple trigram LM.
This code can be easily extended to deal with higher-order n-grams.

Coming back to our initial question about creativity, we could use a trained lan-
guage model to assign probabilities to all the ad versions, and measure whether there is
a correlation between unusual, low-probability versions and their eventual success.

3.6. Generation. Typically, Markov chain language models are used to predict fu-
ture states, but we can also use it to generate text (language models and Markov Chains
are generative graphical models). In fact, Andrey Markov first used Markov Chains to
predict the next letter in a novel. We will do something similar and use a Markov chain
process to predict the next word, i.e., to generate sentences.

This technique has become a bit infamous, since it was used by some people to
generate real-looking, but meaningless scientific papers (that actually got accepted!),
and is still used by spammers in order to generate their emails. However, there are
also much more innocent use cases, such as generating real-looking nonce stimuli for

generate text

82

an experiment, or for a light-hearted illustration of the difference between two political
candidates, by letting their respective LMs “finish” the same sentence.

We can use the counts from our language model to compute a probability distribu-
tion over the possible next words, and then sample from that distribution according to the
probability (i.e., if we sampled long enough from the distribution of a word P(w|u,v),
we would get the true distribution over the trigrams).

1 import numpy as np

2
3 def

~ o U1 >

6}

9 def
10
11
12
13
14
15
16
17

sample_next_word (u, v):

keys, values = zip(xcounts[(u, v)].items())

values = np.array (values)

values /= values.sum()

return keys[np.argmax (np.random.multinomial (1, wvalues))]

generate () :
result = ["x"', "%']
next_word = sample_next_word(result[-2], result[-1])
result.append (next_word)
while next_word != 'STOP':
next_word = sample_next_word (result[-2], result[-1])

result.append (next_word)

return ' '.join(result[2:-1])

CODE 35. A simple trigram sentence generator.

This generates simple sentences. A trigram model is not very powerful, and in order

to generate real-sounding sentences, we typically want a higher order, which then also
means a much larger corpus to fit the model on.

4. TOPIC MODELS 83

4. Topic Models

Imagine we have a corpus of restaurant reviews and want to learn what people
are mostly talking about: what are their main complaints (price, quality, hygiene?),
what types of restaurants (upscale, street food) are they discussing, and what cuisines
(Italian, Asian, French, etc.) do they prefer? TF-IDF terms can give us individual
words and phrases that hint at these things, but they do not group together into larger
constructs. What we want is a way to automatically find these larger trends.

Topic models are one of the most successful and best-known applications of
NLP in social sciences (not in small part due to its availability as a package in R). Their
advantage is that they allow us to get a good high-level overview of the things that are
being discussed in our corpus. What are the main threads, issues, and concerns in the
texts?

What we ultimately want is a distribution over topics for each document. E.g.,
our first document is 80% topic 1, 12% topic 2, and 8% topic 3. In order to interpret
these topics, we want for each topic a distribution over words. E.g., the five words
most associated with topic 1 are “pasta”, “red_wine”, “pannacotta”, “aglio”, and “ragu”.
Based on these words, we can give it a descriptive label that sums up the words (here,
for example “Italian cuisine”). This also gives us the basic elements: words, documents,
and topics.

The most straightforward way to express the intuition above mathematically is
through probabilities. The three elements can be related to each other in two con-
ditional probability tables: one that tells us how likely each word is for each topic
(P(word|topic)), and one that tells us how likely each topic is for a specific document
(P(topic|document)). In practice, the distribution of words over topics is usually just
called z, and the distribution over topics for each document is called #. We also have a
separate distribution 6; for every document, rather than one that is shared for the entire
corpus. After all, we do not expect that a document about a fast-food joint hits upon the
same issues as a review of the swankiest 3-star Michelin place in town. Figure 6 shows
the two quantities as graphical distributions.

The term “topic model” covers a whole class of generative probabilistic mod-
els, with plenty of variations, but the most well-known is Latent Dirichlet Allocation
(LDA) (Blei et al., 2003). So in the following, we will use the two terms interchange-
ably.

The operative word here is “generative”: probabilistic models can be used to de-
scribe data, but they can just as well be used to generate data, as we have seen with
language models. Topic models are very similar. In essence, a topic model is a way
to imagine how a collection of documents was generated word by word. They have a
Markov horizon of 0 (i.e., each word is independent from all the ones before), but in-
stead each word is conditioned on a topic. In other words: with a topic model, rather
than conditioning on the previous words (i.e., the history), we first choose a topic and

Topic models

generative proba-
bilistic models
Latent Dirichlet Al-
location (LDA)

84

0,65
0,04 0,13 0,13 0,04

Document 1

Document 2 0,29 0,29

Document3 547 017 017 933 047
I L N
0,47
Document 4 H
0,20 0,20
e 0,07 007 e
0,79
Document N
0,04 0,11 0,04 0,04
Topic 1 Topic 2 Topic 3 Topic 4 Topic 5
7P LPESCRIPTORS
o N N\
Topic 1 L/ — | V \i
) - w | = R)
Topic 2
Topic 3
Topic 4 |
1 .
Topic 5

words

FIGURE 6. Graphical representation of the topic model parameters 6 =
P(topic|document) (top) and z = P(word|topic) (bottom). Topic de-
scriptors are the top & words with the highest probability for each topic
in 2z

then select a word based on the topic. How this is supposed to have happened is de-
generative process scribed in the generative process. This is why LDA is a “generative model”. The steps

4. TOPIC MODELS 85

in this generative story for how a document came to be are fairly simple: for each word
in a document, we first choose the topic of that slot, and then look up which word from
the topic should fill the slot. Or, more precisely, for a document d;:

(1) Set the number of words /N by drawing from a Poisson distribution Poisson distribution

(2) Draw a multinomial topic distribution 6 over k topics from a Dirichlet distri- Dirichlet distribu-
bution tion

(3) Forj € N:

e Pick a topic ¢ from the multinomial distribution 6
e Choose word w; based on its probability to occur in the topic according to
the conditional probability z;j = P(w;,|t)
No, this is of course not how documents are generated in real life, but it is a useful
abstraction for our purposes. Because if we assume that this is indeed how the document
was generated, then we can reverse-engineer the whole process to find the parameters
that did it. And those are the ones we want. The generative story is often depicted
in plate notation (Figure 7) We have already seen # and z. The first describes the plate notation

HOW SPECIFIC ARE
WorDsS 10 T0PIES? KEPEAT

TOPIL
D/STZ&\
\

I ‘\/

o-olo—®

HON M ANY i #INoEPSN
T0RICS PER / #D0CUMENTSM
DOCUMENT. Wozp

DISTRY

FIGURE 7. Plate notation of LDA model.

probability of selecting a particular topic when sampling from a document. The second

describes the chance of selecting a particular word when sampling from a given topic.

Each of those probability distributions have a hyperparameter attached to them, @ hyperparameter
and [, respectively. « is the topic prior: it is the parameter for the Dirichlet process topic prior

(a process that generates probability distributions) and controls how many topics we

word prior

Gibbs sampling

Expectation
mization

data likelihood

Maxi-

86

expect each document to have on average. If we expect every document to have several
or all of the topics present, we choose an o value at 1.0 or above, leading to a rather
uniform distribution. If we know or suspect that there are only a few topics per document
(for example because the documents are quite short), we use a value smaller than 1.0,
leading to a very peaked distribution. 3 is the word prior: it controls how topic-specific
we expect the words to be. If we think that words are very specific to a particular topic,
use a small 3 value (0.01 or less), if we think they are general, we use values up to 1.0
We can imagine both of these parameters a bit like entropy: the lower the value, the
more peaked the underlying distribution.

Now, we do not have the two tables yet, so we need to infer them from the data. This
is usually done using either Gibbs sampling or Expectation Maximization (Dempster
et al., 1977). We do not have the space here to go in depth of how these algorithms
work (gentle introductions to them are Resnik and Hardisty (2010) and Hovy (2010),
respectively). Both are essentially guaranteed to find better and better parameter settings
the longer we run them (i.e., the models become more and more likely to have produced
the data we see). The question is of course: where do we start? In the first round, we
essentially set all parameters to random values, and see what happens. Then we update
the parameters in order to improve the fit with the data and run again. We repeat this
until we have reached a certain number of iterations, or the parameters stop changing
much from iteration to iteration, i.e., the model fits the data more and more. We can
measure the fit of the model to the data (also called the data likelihood) by multiplying
together all the probabilities involved in generating the corpus.

4.1. Caveats. The results depend strongly on the initialization and the parameter
settings. There are a couple of best practices and rules of thumb (see also Boyd-Graber
et al. (2014)):

(1) thoroughly preprocess your data: lowercase the text, use lemmatization, re-
move stopwords, replace numbers and user names, and join collocations (and
document your choices).

(2) use a minimum document frequency of words: exclude all words that are rare
(a word that we have seen 5 times in the data could just be a name or a common
misspelling). Depending on your corpus size, a document frequency of 10, 20,
50, or even 100 is a good starting point.

(3) maximum document frequency of words: a word that occurs in more than 50%
of all documents has very little discriminative power, so you might as well
remove it. However, in order to get coherent topics, it can be good to go as low
as 10%

(4) choose a good number of iterations: when is the model done fitting? While the
model will always improve the data likelihood with more iterations, we do not
want to wait indefinitely. Choosing a number that is too small, however, will
result in an imperfect fit. After you are happy with the other parameter choices,
extend the number of iterations and see whether the results improve.

w N =

o U w N

~J

[e¢]

Sw N

o J o Ul

[HE I
N PO 0

4. TOPIC MODELS 87

In either case, you will have to look at your topics and decide whether they make
sense. This can be non-trivial: a topic might perfectly capture a topic you are not aware
of (e.g., the words “BLEU, Bert, encoder, decoder, transformer”” might look like random
gibberish, but they perfectly encapsulate papers on machine translation).* Because top-
ics are so variable from run to run, they are not stable indicators for dependent variables:
we cannot use the output of a topic model to predict something like ratings.

4.2. Implementation. In order to implement LDA in Python, there are two possi-
bilities, gensim and sklearn. We will look at the gensim implementation here,
and run it on a sample of wine descriptions to find out what sommeliers talk about.

from gensim.models import LdaMulticore, TfidfModel
from gensim.corpora import Dictionary
import multiprocessing

CODE 36. Code for loading topic models from gensim.

dictionary = Dictionary (instances)
dictionary.filter_extremes (no_below=100, no_above=0.1)

ldacorpus = [dictionary.doc2bow (text) for text in instances]
tfidfmodel = TfidfModel (ldacorpus)

model_corpus = tfidfmodel [ldacorpus]

CODE 37. Extracting and limiting the vocabulary, and transforming the
data into TF-IDEF representations of the vocabulary.

num_passes = 10

num_topics = 20

find chunksize to make about 200 updates
chunk_size = len(model_corpus) * num_passes/200

model = LdaMulticore (model_corpus,
id2word=dictionary,
num_topics=num_topics,
workers=min (10, multiprocessing.cpu_count()-1),
passes=num_passes,
chunksize=chunk_size

CODE 38. Training the LDA model on the corpus on multiple cores.

“Thanks to Hanh Nguyen for the example.

)] Sw N

O W 0 J o

0 J o U W N

88

This will give us a model we can then use on the corpus in order to get the topic
proportions for each document:

topic_corpus = model [model_corpus]

CODE 39. Transforming the corpus into topic proportions.
We can also examine the learned topics:

model .print_topics ()

CODE 40. Showing the topic words.
Unfortunately, these are formatted in a way that is a bit hard to read:
[(0,
'0.011%"rose" + 0.010x"fruity" + 0.010x"light" + 0.009x"orange" +

0.009+"pink" + 0.008«"1lively" + 0.008+"balance” + 0.008+"mineral"
+ 0.008x"peach™ + 0.007*"coloxr""'),

We can use regular expressions to pretty this up a bit:

import re
topic_sep = re.compile (r"0\.[0-9]{3}\x")
model_topics = [(topic_no, re.sub(topic_sep, '', model_topic) .split ('
+ ')) for topic_no, model_topic in
model .print_topics (num_topics=num_topics, num_words
=5)]
descriptors = []
for i, m in model_topics:
print (i+1, ", ".join(m[:5]))
descriptors.append (", ".join(m[:2]).replace('"', "'"))

CODE 41. Enumerate the topics and print out the top 5 words for each.
This gives us a much more readable format:

"rose", "fruity", "light", "orange", "pink"
"pretty", "light", "seem", "mix", "grow"
"tobacco", "close", "leather", "dark", "earthy"
"lime", "lemon", "green", "zesty", "herbal"
"pepper", "licorice", "clove", "herb", "bright"
"toast", "vanilla", "grill", "meat", "Jjam"
"Jammy", "raspberry", "chocolate", "heavy", "cola"

0 J o U b W N

age", "structure", "year", "wood", "firm"

4. TOPIC MODELS 89

9 9 "pear", "apple", "crisp", "white", "attractive"

1
2

e
S

4
5
6

7

4.3. Selection and Evaluation. The first question with topic models is of course:
How many topics should I choose? This is a good question, and in general, more likely
models should also have more coherent and sensible topics, but that is a rough and
tenuous equivalence. Which brings us to the question of topic coherence. Ideally, we
want topics that are “self-explanatory”, i.e., topics that are easy to interpret by anyone
who sees them. A straightforward way to test this is through an intrusion test: take
the top 5 words of a topic, replace one with a random word, and show this version to
some people. If they can pick out the random intruder word, then the other words must
have been coherent enough as a topic to make the intruder stick out. By asking several
people and tracking how many guessed correctly, we can compute a score for each topic.
Alternatively, we can use easy-to-compute measures that correlate with coherence for all
pairs of the topic descriptor words, to see how likely we are to see these words together,
as opposed to randomly distributed.

There are many measures we can use (Stevens et al., 2012), but here, we will focus
on two: The UMass evaluation score (Mimno et al., 2011), which uses the log prob-
ability of word co-occurrences; and the C, score (Roder et al., 2015), which uses the
normalized pointwise mutual information and cosine similarity of the topic words. We
can use these measures to compute a coherence score for each number of topics on a
subset of the data, and then choose the number of topics that gave us the best score on
both (or on the one we prefer).

In Python, we can choose these with the CoherenceModel

from gensim.models import CoherenceModel

coherence_values = []

model_list = []

for num topics in range (5, 21):
print (num_topics)
model = LdaMulticore (corpus=sample, id2word=dictionary,
num_topics=num_topics)
model_list.append (model)
coherencemodel_umass = CoherenceModel (model=model, texts=
test_sample, dictionary=dictionary, coherence='u_mass')

coherencemodel_cv = CoherenceModel (model=model, texts=test_sample
, dictionary=dictionary, coherence='c_v')

coherence_values.append ((num_topics, coherencemodel_umass.
get_coherence (), coherencemodel_cv.get_coherence()))

CODE 42. Choosing topic number via coherence scores.

topic coherence

intrusion test

entropy

perplexity

structural topic
model

Author Topic Model

90

That will give us a relatively good idea of the best number of topics, as we can see
in Figure 8.

—2.7001 —— UMass | 0-2457 ey
—2.725 0.240+
—2.7504 0.2354
—2.7754 0.230
—2.800 0.225+
—2.8254 0.220+
—2.850 0.215+
—2.8754 0.210
T T
56 7 8 91011121314151617181920 56 7 8 91011121314151617181920
num_topics num_topics

FIGURE 8. Coherence scores for different numbers of topics

Even after we settle on a number of topics, there is still quite a lot of variation. If
we run 5 topic models with the same number of topics on the same data, we will get 5
slightly different topic models, because we 1nitialize the models randomly. Some topics
will be relatively stable between these models, but others might vary greatly. So how
do we know which model to pick? The data likelihood of a model can also be used to
calculate the entropy of the model, which in turn can be used to compute the perplexity.
We can compare these numbers and select the model with the best perplexity. Entropy
and perplexity are model-inherent measures, i.e., they only depend on the parameters of
the model. That means we can use a grid search over all the possible combination of
parameter values to find the best model.

4.4. Adding Structure. A popular variant of LDA is the structural topic model
(STM) by Roberts et al. (2013). This model has become very popular in computational
social science, since we often have access to external factors (covariates) associated with
the text, such as the author of the text, when it was written, or which party published
it. More often than not we are interested in the effects of these factors on our topics.
A simple way is to aggregate the topic distributions by each of these factors. However,
a more principled approach is to algorithmically model the influence of the external
factors on the topic distributions.

The original STM is again only available as an R package, but gensim added a
version of the structural topic model as Author Topic Model. The interface is essen-
tially the same as for the regular LDA model, with one addition: we need to provide a

o U W N

g w N

4. TOPIC MODELS 91

dictionary that maps from each value of our external factor to the documents associated
with it. In the original context, this is a mapping from scientific authors to the papers
they were involved in writing. In our example, let’s use the country of origin for each
wine as covariate: that way, we can learn what the dominant flavor profiles are for each
country (see Figure 9). As we can see, each category receives a dominant topic.

0.6

character, wood
citrus, apple
herbal, feel
import, try
open, bright
pear, lemon
vanilla, price
vineyard, cola

0.3
0.2
year, very
0.1 I I\ J
0.0 2

%2}
o)

0.5

0.4

INninnii

Italy

France i

Germany
Spain

FIGURE 9. Topic distribution by country

The implementation in Python is very similar to the regular LDA model. The only
thing we need to do before we can start training, is to map each covariate (here, a
country) to the index of all documents it is associated with. In our case, each document
has only one covariate, but we can easily associate each covariate with a number of
documents (for example if we have scientific papers written by several authors).

from collections import defaultdict
author2doc = defaultdict (list)

for i, country in enumerate (df.country):
author2doc[country] .append (1)

CODE 43. Creating the mapping from covariates to document indices.
Once we have this mapping, we can run the model.

from gensim.models import AuthorTopicModel
from gensim.test.utils import temporary_ file

with temporary file("serialized") as s_path:
author_model = AuthorTopicModel (

guided LDA

[

oo I

e

11
12
13
14
15

W 00 1 o U1 b W DD =

92

model_corpus,
author2doc=author2doc,
id2word=dictionary,
num_topics=9,
serialized=True,
serialization_path=s_path,
alpha=0.5

author_model .update (model_corpus, author2doc)

CODE 44. Running the Author LDA model.

The results we get are similar to the regular LDA model (again, we use regular
expressions to clean things up a bit):

1 "raspberry", "not", "make", "vanilla", "chocolate"

2 "tone", "bright", "back", "velvety", "smooth"

3 "open", "feel", "tobacco", "deliver", "close"

4 "character", "age", "structure", "wood", "fruity"

5 "green", "apple", "zesty", "herbal", "body"

6 "peach", "honey", "lemon", "apple", "pear"

7 "flesh", "bouquet", "mouth", "mingle", "rind"

8 "pair", "mouthfeel", "white", "easy", "exotic"

9 "cheerful", "guava", "mouthful", "underripe", "blast"

As we have seen, if we visualize these topic proportions per country (see Figure 9),
the countries each get a different profile, corresponding to their dominant styles of wine.

4.5. Adding Constraints. Even when setting the hyperparameters well and having
enough data to fit, there is a good chance that topics which we know should be separate
are merged by the model. One way to keep them apart is to tinker with z, by adding
priors to some of the words. This will nudge the model towards some distributions
and away from others. In practice, we are preventing the model from exploring some
parameter configurations that we know will not lead to a solution we want. Jagarlamudi
et al. (2012) introduced a straightforward implementation of such a guided LDA.

Blodgett et al. (2016) used a fixed prior distribution over topics based on the known
distribution of different ethnicities in the cities they investigated. By using the same
number of topics as there were ethnicities in the data, they were able to capture eth-
nolects and regional terms.

4.6. Topics vs. Clusters. A relatively frequent question at this point is “Why
should I use a topic model if I could just cluster word embeddings?” The two ap-
proaches do indeed produce similar results: a separation of the data into larger semantic
groups. The differences are somewhat subtle: word embeddings capture semantic
similarity within the defined window size, topic models take the entire document into

4. TOPIC MODELS 93

account. If the documents are short (e.g., Tweets, reviews) and the window size of the
embedding model is sufficiently wide, the two are equivalent. However, with longer
document types, word embeddings capture only general semantic fields (i.e., what are
all the things people talk about in the data), not any specific to a particular document
(i.e., what is the distribution of things people talk about in each document). On the
other hand, clustering embeddings is relatively stable and will produce the same results
every time, whereas the output of topic models varies with every run.

Lately, there has been an increased interest in neural (rather than probabilistic)
topic models. They seem to be more flexible, result in more coherent topics, and are
applicable to multiple languages (Das et al., 2015; Srivastava and Sutton, 2017; Dieng
et al., 2019; Bianchi et al., 2020). However, there are no widely available Python
libraries — yet.

retrofitting

94

5. Retrofitting

Let’s say we have a corpus of texts from various political parties, and we learn word
embeddings. In addition to the semantic similarities, these embeddings reflect some of
the biases and attitudes reflected in the texts. However, they do not necessarily reflect
the party divisions. We can include this information by using document embeddings
for the various parties. However, this requires us to have the information at the time
of training, and adds a layer of complexity to the training process (i.e., we might
need more training data than for pure word embeddings). Instead, we might want to
manipulate the existing word embeddings, keeping the original semantic distinctions,
but adding further, non-linguistic information we have. In the same vein, if we have
learned some document embeddings of firms based on their online self-descriptions,
we might want to incorporate external knowledge we have about the markets they are
in, or the types of companies they are (privately or publicly owned, etc.)

So far, we have looked at embeddings as a way to represent the linguistic simi-
larity between words and documents in terms of spatial distance. Howeyver, especially
when our documents represent entities in-the real world, we might have additional
external, non-linguistic knowledge about the entities that we might want to incorporate.
In order to do this, we use an algorithm called retrofitting (Faruqui et al., 2015; Hovy
and Fornaciari, 2018).

Retrofitting was originally introduced as a way to refine existing word embedding
vectors to let them reflect semantic similarities that were not apparent in the training
data, but instead came from external lexicons Faruqui et al. (2015). These lexicons
included external ontologies, such as WordNet Miller (1995) or the Paraphrase Data
Base PPDB Ganitkevitch et al. (2013) to bring synonyms (e.g., “flat” and “apartment’)
even closer together in embedding space.

Formally, we create a set {2 that contains tuples of words that belong to the same
equivalence group, for example Q0 = {(apartment, flat)}. During retrofitting, we
iteratively update the word embeddings of words within the same class (as defined in 2)
to increase the cosine similarity between them. This creates a retrofitted matrix Dtrain
of the original word embedding matrix D;,.;,. The update for a word embedding d; is
simply a weighted combination of two things: the original word embedding, and the
average vector over all the embeddings of its neighbors:

Zj:(i,j)eQ d;

N
where d; is the original embeddings vector, N = |{Vj : (i,5) € Q}| is the set of
all embeddings in the same equivalence group, and « and [are hyper-parameters that
control the trade-off between the original embeddings space and the updates from the
neighboring embeddings during retrofitting. In Faruqui et al. (2015), they set « = (3. In
contrast, we can also define

CZZ:OédZ‘i‘B

b=1—a«a

5. RETROFITTING 95

By varying « from 0 to 1, we can control the strength of the retrofitting process,
effectively trading off the influence of the original embeddings versus the vectors of the
equivalence classes. So o = 1 simply reproduces the original embeddings matrix, i.e.,
D = D, whereas o = 0 only relies on the retrofitting updates from the neighborhood
after the initialization.

0.6 ‘
I
G
0.5
] >
& 2
5,04
0.3
—
s
0.2
0.50 0.55 0.60 0.65 0.70 0.75 0.80
X

FIGURE 10. Example of retrofitting for 10 words in embeddings space,
equivalence class represented by color.

With each iteration of the retrofitting, we move the target word according to the cur-
rent position of its neighbors. Since those neighbors get moved as well, the average in
each round will be slightly different, but converge over time. Because we always use
the original vector as part of the update, the retrofitting does not end up collapsing all
embeddings into the same point. Figure 10 shows the effect of retrofitting on 10 word
embeddings, with equivalence classes colored by class. The squares represent the start-
ing point, and the circles show the position at each iteration of the retrofitting. Words
belonging to the same equivalence group get drawn closer to each other in embeddings
space.

If we are adjusting document embeddings, and our equivalence lexicon {2 is based
upon the membership of each document in an outcome class (say, all positive vs. all
negative reviews) such that all members of one class are connected, we essentially make

96

the two classes more distinct, which makes them easier to distinguish. We will come
back to this in the chapter on classification (see chapter 11).

The code for retrofitting is extremely simple: it only requires a matrix of N embed-
dings, and an N-by-N adjacency matrix of neighbors (which is programmatically faster
and easier to handle than a dictionary):

1 from copy import deepcopy

2 import numpy as np

3 import sys

4

5 def retrofit (vectors, neighbors, normalize=False, num_iters=10, alpha

@ J o

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

30
31
32
33

=0.5) :
beta = l-alpha
N, D = vectors.shape

new_vectors = deepcopy (vectors)

if normalize:
for ¢ in range(N) :
vectors[c] /= np.sqgrt ((vectors[c]*x2).sum() + le-6)

run retrofitting
print ("retrofitting", file=sys.stderr)

for it in range (num_iters):
print ("\t{}:".format (it + 1), end=' ', file=sys.stderr)
loop through every instance
for ¢ in range (N):

print (".", end='', file=sys.stderr)
instance_neighbours = neighbors.get(c, [])
num_neighbours = len(instance_neighbours)
#no neighbours, pass - use data estimate
if num_neighbours == 0:
continue
new_vectors[c] = alpha x vectors[c] + beta » new_vectors]|

instance_neighbours] .sum(axis=0)
print ('', file=sys.stderr)

return new_vectors

CODE 45. A simple trigram LM.

Applications of retrofitting can also include geographic information, such as the
adjacency of cells, see Hovy et al. (2019); Purschke and Hovy (2019).

Part I11

Prediction
Using patterns in the data

prediction

classes

classification
regression

In the previous part, we looked at ways of exploring textual data, to find
out what kind of structures are in there. We will build on some of that knowledge
in this part, but we will use it to infer information for new, unseen data using prediction.

Prediction is useful for inferring both linguistic structure (parts of speech, syn-
tax, NER, discourse structure), as well as a multitude of social constructs, signaled in
language. Sentiment analysis is probably the most well-known application. However,
there is virtually no limit in the kind of things we can predict from text: power, trust,
misogyny, age, gender, etc.

Prediction is a core part of machine learning, and essentially involves showing the
computer lots of examples of inputs (i.e., in our case documents) and the correct output
label for them (for example, spam or no spam, or positive, negative, neutral). Note that
we can have any number of possible output labels (classes).

Because we try to predict the class labels of new input, prediction is synonymous
with classification. If instead of classes, we predict a continuous numerical value, we
refer to it as regression. In social sciences, there are some cases where we would like
to do regression, but there are practically no use cases in NLP. The principles described
below are largely analogous for regression, but we will not cover it in detail.

Prediction is a handy application of machine learning, both for NLP and social
sciences. It allows us to infer variables of interest (power relations, buying intent, etc.)
and complete missing variables (e.g., age, gender), based on language. The principles
behind these models are relatively simple. With sufficient data and ever more powerful
models, it is easy to get carried away in the possibilities.

We will look at the basic principles behind classification, how to set up experiments
in a realistic way (see page 113 and 115) to evaluate the performance (see page 117),
test the significance of our performance results (see page 120), and prevent overfitting
(see page 124). We will then look at how to improve the predictive performance of the
models with a variety of techniques (see page 133).

In the last few sections of the books, we will take a look at neural networks. This
is a booming research area (even though the basic idea is already from the 1950s), so
we will only be able to cover the basics (see page 160), as well as a number of model
architectures that have shown themselves especially useful for text analysis (see pages
167, 173, 176).

However, since language is one of the most individual human capabilities, it also
reveals a lot about the person using it. The predictive models we build can expose
people’s profiles and characteristics without them being aware of it. With great power,
there comes great responsibility, so before we delve deeper into the algorithmic side of
prediction, let’s look at the ethical aspects of it.

1. ETHICS, FAIRNESS, AND BIAS 99

1. Ethics, Fairness, and Bias

You have a data set with survey answers. For some participants, you have informa-
tion about their age and gender. However, you ran several trials, and in some of them,
you forgot to have subjects provide demographic information, so now you have missing
data. It then turns out that controlling for gender would be a handy thing to do for your
study. You decide to train a classifier on the subset of the data where gender informa-
tion is available, and then apply the classifier to the rest of the data. That way, you can
impute the missing demographic information. Your classifier performs well, and you
complete the study, now able to control for the effect of gender.

As you look at the data again, though, you realize that it has a bias. Most of the
participants who did provide gender information were women, so the classifier is much
better at identifying women. It also suggests women more often. You now suspect
that the gender distribution on the entire data set is skewed towards predicted female
participants. You also realize that you have essentially created a tool that can infer
gender where people did not provide it. Maybe they just forgot, but maybe they did not
want to reveal this information. Is it ok to still use your tool on the data? Obviously,
you are only interested in answering a scientific question, but you realize that someone
could use your tool with much less honorable motives.

With great (predictive) power comes great responsibility, and especially when
working with language, there are a number of ethical questions that arise. There are no
hard and fast rules for everything, and the topic is still evolving, but several topics have
emerged so far. While the overview here is necessarily incomplete, it is a starting point
on the issue.’

Originally, machine learning and NLP were about solving fairly artificial prob-
lems on small data sets, with the promise of doing it on larger data at some later point.
And while there has always been a certain amount of skepticism and worry about AI’s
power, these worries were largely theoretical. In essence, there was not enough data
and computational power for these systems to make an impact on people’s life.

With the recent availability of large amounts of data, and the universal application
of ML, this point has finally arrived. With the focus on making useful tools, we have
moved away from explanatory and descriptive models (to understand why they returned
a certain result), towards predictive models. They are harder to analyze, but produce
excellent predictions.

It now turns out that one of the reasons why models have gotten so good at predic-
tion is because they pick up on things that they were not meant to exploit. Embedding
models reflect ethnic and gender stereotypes (Bolukbasi et al., 2016), bail decision
predictions are majorly influenced by the defendants’ ethnicity (Angwin et al., 2016),
automatic captioning and smart speakers do not work for people with non-standard

IThis chapter is based on the work by Hovy and Spruit (2016), as well as the ACL workshops on
Ethics in NLP.

bias

privacy

dual use

selection bias
annotation bias

demographic bias

100

language varieties (Tatman, 2017; Harwell, 2018), and skin cancer detectors work only
on white skin (Adamson and Smith, 2018).

All of these unintended consequences are examples of bias: a systematic differ-
ence from the truth. These biases can arise from the data, the models, or the research
design itself.

Bias is not necessarily a problem a priori. In the behavioral psychology tradition,
biases are mental shortcuts that help us save time and energy. In Bayesian statistics, the
prior is a bias: it captures what we expect to encounter before we have any evidence.
Expecting someone from Germany to have a German accent in English is a bias, but it
means we won’t be surprised if they do have an accent, and understand them better. A
bias becomes problematic, though, when we trust it more than the data, or when we let
it govern decisions.

In language data, demographic biases are powerful, since we use language to
consciously and subconsciously signal who we are. And so language reflects a lot of
information about our age, gender, ethnicity, region, personality, and even things like
our profession and income bracket.

This leads to a second problem with better and better predictive models, namely
privacy: at this point, we can use NLP systems that exploit the signals in our language
use to predict all of the above features: people’s age (Rosenthal and McKeown, 2011;
Nguyen et al., 2011), gender (Alowibdi et al., 2013; Ciot et al., 2013; Liu and Ruths,
2013), personality (Park et al., 2015), job title (Preotiuc-Pietro et al., 2015a), income
(Preotiuc-Pietro et al., 2015b), and much more (Volkova et al., 2014, 2015).

Being able to predict arbitrary demographic and socio-cultural attributes puts prac-
titioners in a moral quandary. On the one hand, we want the best tools to answer our
questions and make generalizable claims about the world. On the other hand, we do not
want to develop tools that could be misappropriated for nefarious goals. This potential
for abuse is the third problem, called dual use.

1.1. Sources of Bias.

1.1.1. Data. There are two ways in which data can introduce bias into our work:
data selection and annotation. The selection of a demographically not-representative
data set introduces selection bias. Annotation decisions made by the coders of our data
introduce annotation bias.

When choosing a text data set to work with, we are also making decisions about
the demographic groups represented in the data. As a result of the demographic signal
present in language, any data set carries a demographic bias, i.e., latent information
about the demographic groups present in it. As humans, we would not be surprised
if someone who grew up hearing only their dialect would have trouble understanding
other people. So if our data set is dominated by the “dialect” of a specific demographic
group, we should not be surprised that our models have problems understanding others.

1. ETHICS, FAIRNESS, AND BIAS 101

Most data sets have some kind of built-in bias, and in many cases, it is benign. It
becomes problematic when these bias negatively affect certain groups, or advantage
others. On a biased data sets, statistical models will overfit to the presence of specific
linguistic signals that are particular to the dominant group. As a result, the model will
work less well for other groups, i.e., it leads to exclusion of demographic groups.

Concretely, Hovy and Sggaard (2015) and Jgrgensen et al. (2015) have recently
shown the consequences of exclusion for NLP. POS models have a significantly lower
accuracy for young people, as well as ethnic minorities, vis-a-vis the dominant demo-
graphics in the training data. Apart from exclusion, these models will pose a problem
for future research. Given that a large part of the world’s population is currently under
30,% such models will degrade even more over time, and ultimately not meet the needs
of its users.

This issue also has severe ramifications for the general applicability of any findings
using these tools. In psychology, most studies are based on college students, a very
specific demographic: western, educated, industrialized, rich, and democratic research
participants (so-called WEIRD, Henrich et al. (2010)). The assumption that findings
from this group would generalize to all other demographics has proven wrong, and led
to a heavily biased corpus of psychological data and research.

Counter measures. Potential counter-measures to demographic selection bias can be
simple. Post-stratification is the downsampling of over-represented groups in the train-
ing data to even out the distribution until it reflects the actual distribution. Mohammady
and Culotta (2014) have shown how existing demographic statistics can be used as su-
pervision. In general, we can use measures to address overfitting or imbalanced data
to correct for demographic bias in data. Avoiding biased selections is even better, so
when creating new data sets, NLP researchers have been encouraged to provide a data
statement (Bender and Friedman, 2018). This statement includes various aspects of the
data collection process and the underlying demographics. It provides future researchers
with a way to assess the effect of any bias they might notice when using the data. As a
useful side effect, it also forces us to consider how our data is made up.

To prevent the effect of annotation bias, we can use annotation models (Hovy et al.,
2013; Paun et al., 2018). These models help us find biased annotators, and let us account
for the human disagreement between labels. We can use this quantity in the update
process of our models (Plank et al., 2014).

1.1.2. Models. Another source of biased predictions is the tendency of statistical
models for overamplification. I.e., the tendency of a model to rely on small differ-
ences between subjects to satisfy the objective function and make good predictions.
Unchecked, the model can maximize its objective score by amplifying the difference
when predicting new data, and creating an imbalance that is much larger than in the
original data. Yatskar et al. (2016) have shown that in an image captioning data set,
58% of the captions for pictures of a person in a kitchen mentioned women. A small but

exclusion

data statement

annotation models

overamplification

2http://www.socialnomics.net/2010/04/13/over—5O—of—the—worlds—population—is—

—-under—-30-social-media-on-the-rise/

bias confirmation
overgeneralization

adversarial learning

underexposure

102

noticeable difference, which could be corrected by sampling. However, as Zhao et al.
(2017) showed, a standard statistical model trained on this slightly biased data, ended
up predicting the gender of a person in a kitchen picture to be a woman in 63% of the
cases.

The cost of these false positives seems low. A user might be puzzled or amused
when seeing a mislabeled image, or when receiving an email addressing them with the
wrong gender. However, relying on models that produce false positives may lead to
bias confirmation and overgeneralization. Some of these false positives might amuse
us, but would we accept them if the system predicted sexual orientation and religious
views, rather than age and gender? For any text prediction task, this is just a matter of
changing the target variable and finding some data.

Another problem of overamplification is the proliferation of stereotypes. Rudinger
et al. (2018) found that coreference resolution systems (which link a pronoun to the
noun they refer to) were biased by gender. In the sentence, “The surgeon could not
operate on her patient: it was her son,” the model does not link “surgeon” and ‘“‘her.”
The cause of this inability is presumably biased training data, but the effect feeds into
gender stereotypes. Similarly, Kiritchenko and Mohammad (2018) showed that senti-
ment analysis models changed their scores for the same sentences when a single word
was replaced. E.g., by replacing a female with a male pronoun, or replacing a typically
“white” name with a typically “black" name. Both “She/He made me feel afraid” and
“I made Heather/Latisha feel angry" result in higher scores for the second case.

Counter measures. To address the overgeneralization of models, we can ask our-
selves “would a false answer be worse than no answer?” Instead of taking a tertium non
datur approach to classification, where a model has to (and will) produce some answer,
we can use dummy variables that say “unknown.” We can also use measures such as er-
ror weighting, which incur a higher penalty if the model makes mistakes on the smaller
class. Alternatively, we can use confidence thresholds below which we do not assign a
label.

Recently, (Li et al., 2018) have shown that adversarial learning (a specialized ar-
chitecture in neural networks) can reduce the effect of predictive biases. It even helps to
improve performance of the models!

1.1.3. Research Design.. As we have seen in previous chapters (and as this book is
further contributing to), most NLP research is on English, and in English. It generally
focuses on Indo-European data/text sources, rather than on small languages from other
language groups, for example in Asia or Africa. Even if there is a potential wealth of
data available from other languages, most NLP tools skew towards English (Schnoebe-
len, 2013; Munro, 2013).

This underexposure of other languages creates an imbalance in the available
amounts of labeled data. It also reproduces itself. Because most of the existing labeled
data covers only few languages, most existing research focuses on those languages.
Consequently, this research then creates even more resources for those languages. This

1. ETHICS, FAIRNESS, AND BIAS 103

dynamic makes new research on smaller languages more difficult, and it naturally di-
rects new researchers towards the existing languages. The focus on English may there-
fore be self-reinforcing. The existence of off-the-shelf tools for English makes it easy
to try new ideas in English. It requires a much higher startup cost to explore other
languages, in terms of data annotation, basic analysis models, and other resources.
There is little in the way of semantic or syntactic resources for many languages. In
a random sample of Tweets from 2013, we found 31 different languages. There were
no treebanks for 11 of them, and even fewer semantically annotated resources like
WordNets.> Consequently, researchers are less likely to work on those languages.

Conversely, the prevalence of resources for English has created an overexposure
to this variety, even though both morphology and syntax of English are global outliers.
The overexposure to English (as well as to certain research areas or methods) creates
a bias described by the availability heuristic (Tversky and Kahneman, 1973). If we
can recall something more easily, we infer that this thing must be more important,
bigger, better, more dangerous, etc. For instance, people estimate the size of cities
they recognize to be larger than that of unknown cities (Goldstein and Gigerenzer,
2002). The same holds for languages, methods, and topics we research. Would we
have focused on n-gram models to the same extent if English was as morphologically
complex as, say, Finnish?

Lately, there are many approaches to develop multi-lingual and cross-lingual NLP
tools for linguistic outliers. However, there are simply more commercial incentives
to overexpose English, rather than other languages. Even though other languages are
equally fascinating from a linguistic and cultural point of view, English is one of the
most widely spoken languages. It is therefore also the biggest market for NLP tools.

Overexposure can also create or feed into existing biases. If research repeatedly

found that the language of a particular demographic group was harder to process. This
research could create a situation where this group was perceived to be more difficult,
especially in the presence of pre-existing biases. The confirmation of biases through the
gendered use of language, for example, has been cited as being at the core of second and
third wave feminism (Mills, 2012). Overexposure thus creates biases which can lead to
discrimination. To some extent, the frantic public discussion on the dangers of Al is a
result of overexposure (Sunstein, 2004).
There are no easy solutions to this problem, which might only become apparent in
hindsight. It can help to ask ourselves counterfactuals: Would I research this is if the
data wasn’t as easily available? Would my finding still hold on another language? We
can also try to assess whether the research direction of a project feeds into existing
biases, or whether it overexposes certain groups.

1.2. Privacy. In the wake of the Cambridge Analytica scandal, it has become ap-
parent that our data is not as secret and private as we would like to think. In the wake

3Thanks to Barbara Plank for the analysis!

overexposure

availability heuristic

General Data Protec-
tion Regulation

federated learning

normative ethics
descriptive ethics

104

of this scandal, the European Parliament has enacted a law designed to protect privacy
online: the General Data Protection Regulation (GDPR).

GDPR makes some provisions for research purposes (as opposed to commercial
purposes). Still, it does not give out a carte blanche to be negligent with subject data.
Non-protected categories can still be predicted for research purposes. Even protected
categories are ok to use, as long as they can not be used to identify individual subjects.
In other words, if it becomes necessary to estimate the overall prevalence of gender
or sexual orientation in the data, we can use models to infer these in aggregate. It is,
however, not ok to use them to profile individual subjects.

Counter measures. Protecting privacy can be helped by keeping data sources sep-
arate from each other. To still be able to learn from all of these sources, we can use
techniques called federated learning (Kone¢ny et al., 2016). Coavoux et al. (2018)
have shown that neural network architecture choices can help to protect the privacy of
users. Still, there is also cautious evidence that this protection might not be as bullet-
proof as we might hope (Elazar and Goldberg, 2018).

1.3. Normative vs. Descriptive Ethics. Biased models and data sets are a nuisance
when used to train a classifier. However, they can also offer a window into the nature
of society. This property illustrates an interesting distinction between normative ethics
and descriptive ethics: Because we use language to express opinions, and because word
embeddings capture semantic similarity, they also capture how much writers associate
two terms. This association is reflected in the fact that word embeddings show a high
similarity between “woman” and ‘“homemaker”, and between “man” and “program-
mer”. When biased word embeddings are used as input for predictive models, the inher-
ent bias is clearly negative (Bolukbasi et al., 2016), and therefore normatively wrong for
many applications (e.g., for reviewing job candidates, where ideally, we would want all
genders or ethnicities equally associated with all jobs). However, several social science
studies quickly picked up on the insight provided by the biases contained in word em-
beddings. Works by Garg et al. (2018) and Kozlowski et al. (2018) have shown that we
can use precisely this property of word embeddings to study evolving societal attitudes
about gender roles and ethnic stereotypes, by measuring the distance between certain
sets of words in different decades. Similarly, Bhatia (2017) has shown that this property
of word embeddings can be used to measure people’s psychological biases and attitudes
towards making certain decisions. This bias is therefore descriptively correct.

In contrast, Google Translate used “he” to translate the gender-neutral Turkish pro-
noun “o0” as referring to a doctor, but used “she” when referring to a nurse. This trans-
lation is both normatively and descriptively wrong. And while it is normatively wrong
that Google search autocompletes the query “why are american” with “so fat”, it is also
descriptively insightful. At least as far as stereotypes are concerned.

1.4. Dual Use. The ethics philosopher Hans Jonas has cautioned that any technol-
ogy that is possible will also be used for both good and for bad (Jonas, 1984). Even if
we do not intend any harm in our experiments, biases in them can still have unintended

1. ETHICS, FAIRNESS, AND BIAS 105

consequences that negatively affect people’s lives. The most well-known (and extreme)
example is physics and the atom bomb. Physicists had to confront the fact that some of
their most well-intentioned findings could be (and ultimately were) used to kill.

While in no way as extreme, text analysis techniques can have mixed outcomes as
well. On the one hand, they can vastly improve search and educational applications
(Tetreault et al., 2015), but they can also re-enforce prescriptive linguistic norms when
they work poorly for non-standard language. Stylometric analysis can shed light on the
provenance of historic texts (Mosteller and Wallace, 1963) and aid forensic analysis of
extortion letters, but it can also endanger the anonymity of political dissenters. Text
classification approaches can help decode slang and hidden messages (Huang et al.,
2013), but have the potential to be used for censorship and suppression. At the same
time, NLP can also help to uncover such restrictions (Bamman et al., 2012). Hovy
(2016) shows that simple NLP techniques can be used to both detect fake reviews, but
also to generate them in the first place.

All these examples indicate that we should become more aware of the way other
people appropriate NLP technology for their purposes. We also need to be mindful
that NLP research is and will be used for solely unwanted applications. Automated
censorship or the measuring of party-line adherence online to punish dissenters are two
examples. Statistical models make both of these uses possible. The unprecedented scale
and availability can make the consequences of new technologies hard to gauge.

The examples show that moral considerations go beyond immediate research
projects. As a practitioner, we need to be aware of this duality and openly address it. We
may not directly be held responsible for the unintended consequences of our research
or products, but we should acknowledge how they can enable morally questionable or
sensitive practices, raise awareness in our customers, colleagues, and students, and lead
the discourse on it in an informed manner. The role of the researcher in such ethical
discussions has been pointed out by Rogaway (2015), and the moral obligations for the
practicing data scientists in O’Neil (2016).

spam filtering
sentiment analysis

author attribute pre-
diction

classifiers

logistic regression

features
targets

classes
labels
parameters

weights

vectors
matrices

data matrix

gold labels
ground truth

106

2. Classification

Very often, we are interested in predicting whether a document belongs to a
particular class of interest: is it an ad or not (spam filtering)? Is it positive, negative,
or neutral in tone (sentiment analysis)? Was it written by an older or a younger person
(author attribute prediction)? Most of those applications are commercial. Still,
predictive approaches based on text are becoming more and more common in social
sciences as well. Suppose we can predict from a speech which party the politician
belongs to or whether a report outlines human rights. That tells us something about the
level of political polarization (Peterson and Spirling, 2018) and evolving human rights
standards (Greene et al., 2019). To answer all of these questions, we can use predictive
statistical models (or classifiers). They have been fitted on training texts to maximize
the number of correct predictions on held-out-data.

Classification is one of the core machine learning applications, which has gained
a lot of attention over the last few years. It can seem complicated and mysterious, but
all machine learning is closely related to statistical methods commonly used in social
science. One of the most common (and valuable) classification algorithms is logistic
regression, the same method used to compute the fit between a set of independent
variables and a binary dependent variable in social sciences. The algorithm is the same,
but there are two main differences.

The first set of differences is terminological: instead of independent variables, ma-
chine learning talks about features; instead of dependent variables, it uses targets,
whose values are called classes or labels; the coefficients (or betas) of the algorithm
are referred to as parameters or weights. We will use the machine learning terminol-
ogy depending here, with occasional translations.

In general, we want to represent the data we work with as vectors (i.e., lists of
numbers) and matrices (i.e., a list of vectors). These formats have the advantage that
we can apply all kinds of linear algebra techniques to implement our algorithms, which
are theoretically well-founded and computationally fast. * We represent each example
as a vectors X;, and stack them together to form a data matrix X. Each feature is
one column in the matrix. The labels for all the instances are stored in a vector .
Formally, each training instance is a tuple (X, y;) where X, is a D-dimensional vector
of indicators or real numbers describing the input, and y € K is the correct output class
from a set of possible class labels, /. We also refer to the correct labels as gold labels
or ground truth.

So a data point is characterized by the values of all its features. Visually, we can
imagine each feature as a dimension in a grid by placing it at a point in space. Ideally,
we find dimensions representing the data so that the classes form clusters that are easily

“Most machine learning, natural language processing, and Al boils down to a series of linear algebra
operations. So it would be technically correct to replace all of them with “matrix multiplication”, but it
does not make for nearly as exciting headlines.

2. CLASSIFICATION 107

ISUALIZATION D ATA /L ABEL
. M ATRIX VECTOR

x2 T xl x2 y
A _ T~ A

- 7 4 10.8 A

.\ :> 6.4 8.9 A

@ @ ’—m\\%} 7.7 10.8 A

-~ 95 9.9 A

> 88 12.9 A

> 2.2 18.9 B

> 45 15.7 B

> 62 17.8 B

‘ > g7 17.8 B

x1

FIGURE 1. Example of a two-class problem with the data points plotted
along their two feature dimensions, colored by class label, and separated
by a decision boundary (left), and the corresponding data matrix X with
two columns and the label vector y

separable with a line (or, in more than two dimensions, a hyperplane). See Figure 1 for
an example.

Independent of the classifier, we can write all of these approaches as the familiar
equation

y = f(X;0,0)
That is, the output value y is a function f(-) of the input X, parametrized by a set
of parameters, ¢, and a bias term 0. Depending on the algorithm, # can be weights,
probabilities, or activation functions. We will also see several ways to use b to make our
estimates better in Section 7. In the case of a linear model, like Logistic Regression,
f(X) would be
0-X+b

We multiply each value of X with the corresponding value in 6, and sum up the results.
We add b and threshold the result to get the output. We can visualize the “matrix view”
of this operation as in Figure 2 (we are ignoring b for the moment).

The output of this binary model is a value between 0 and 1. By checking against a
threshold (typically 0.5), we can decide which of the two classes to assign. Once we
have fitted our # vector of weights as in the example above, we can apply it to new

bias term,

multi-class

108

N _TEXTS N LABELS

) DO-8y-/
VECTOR

—(

N=-8y-L M ATEIX N-8y-|
D 1
p- QT vecoe

N X Ny

FIGURE 2. Matrix representation of fitting a classifier: we learn vector
6 to transform matrix X into vector y

data Z (provided it has the same number of columns). The result are predictions of our
model. To distinguish the gold labels y from these predictions, we use a hat over the
predictions: y. Mathematically, we can say this as

§g=0-Z+b

And graphically, we can represent it as in Figure 3 (again ignoring b for now).

There are many machine learning classifiers. Logistic Regression is the most com-
mon, but it can sometimes be good to use Support Vector Machines (Section 8.1), Naive
Bayes (Section 8.2), or (Feed-Forward) Neural Networks (Section 13). We will cover
all of these. These methods differ only in the ways they weigh and combine the input.
However, the principle is always the same: find a pattern of input features, weigh their
evidence, and map that to the output target class. You do this yourself when you scan
a possible spam email: does it contain features like “dear friend”, “amazing offer”, or
“FREE”? How likely is each of those to be spam? If it contains only one, it might be
ham, but if there are too many red flags, it is probably spam.

Suppose we have more than two classes (i.e., a multi-class problem), like in

2. CLASSIFICATION 109

) D-8y-/
VECTOR
K=-gy-L 1-8Y-K
D 1 VECTOR
/Y] ATEIX D QT

FIGURE 3. Matrix view of prediction: multiplying a learned weight vec-
tor # with a new data matrix Z to get the prediction vector y

sentiment analysis, where we want to choose between three outcomes. In that case,
we have two options. We can train a separate binary model for each class (each
learns to distinguish instances of that class from all others) and then choose the one
with the highest confidence. If we learn a multi-class problem in sklearn, the
latter is what Python does under the hood. Alternatively, we can train a model that
predicts a probability distribution over all the possible output values and then choose
the one with the highest value. This distribution is called a softmax (technically, we
exponentiate each value before normalizing, which exaggerates initial differences more
than “regular” normalization).

The second difference between logistic regression as a classifier in machine learning
and as a regression method in social science is its application: prediction vs. explana-
tion. In social science, we fit a model to the data to find an explanation. We examine the
model coefficients to find an explanatory causal correlation between the independent
variables and the dependent variable. Very rarely do we test the predictive power of this
model on new data. In machine learning, in contrast, the objective is only to perform
well on new data. After fitting, we freeze the coefficients and measure how well the
fitted model predicts new, held-out data. These two camps need not be an either-or:
several researchers have shown (Shmueli et al., 2010; Hofman et al., 2017; Yarkoni and
Westfall, 2017) that using machine learning methods to test the predictive accuracy of
a model is a good robustness test. Both fields try to reverse-engineer the underlying
data generation process. Ultimately, social science theory is also about predicting how
systems (people, markets, firms) will behave under similar conditions in the future.
The critical difference is that every causal model is necessarily also a good predictive
model. If we know the causal relation between elements, we can predict how they will
develop. The inverse, however, is not necessarily true. A good predictive model might

softmax

prediction vs. expla-
nation

O J o U w N

= T = T T S e S S O O e
© 0 J oUW N R O W

N
o

21
22
23
24
25
26
27

110

capture aspects that have nothing to do with causality (we will see this when we come
to overfitting in Section 7).

2.1. Checklist Text Classification. Here is a step-by-step checklist on how to clas-
sify text data and code to implement one possible solution. We will elaborate on the
individual steps in the following sections.

(1) label at least 2000 instances in your data set

(2) preprocess the text of all instances in your data (labeled and unlabeled)

(3) read in the labeled instances and their labels

(4) transform the texts into feature vectors using TfidfVectorizer or embed-
dings

(5) optional: select the top N features (where N is smaller than the number of
labeled instances)

(6) fit a classifier

(7) use 5-fold CV to find the best regularization parameter, top NV feature selection,
and potentially feature generation and preprocessing steps

from sklearn.linear_model import LogisticRegression

from sklearn.dummy import DummyClassifier

from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.model_selection import cross_val_score

from sklearn.model_selection import GridSearchCVv

from sklearn.calibration import CalibratedClassifierCV

vectorizer = TfidfVectorizer (ngram_range=(1,2),
min_df=0.001,
max_df=0.75,
stop_words="'english')

X = vectorizer.fit_transform(data['clean_text'])
y data['output']

print (X.shape, y.shape)

get baseline performance

most_frequent = DummyClassifier (strategy='most_frequent')

print (cross_val_score (most_frequent, X, y=y, cv=5, n_jobs=-1, scoring
="fl micro") .mean())

fine-tune classifier
base_clf = CalibratedClassifierCV (cv=5,
base_estimator=LogisticRegression (n_jobs=-1,
solver='lbfgs"'
)
)

28

29
30
31
32
33
34
35
36

O J o Uk W N

I N N e e e e
B O W W Jo U WN R O W

22
23
24
25
26
27
28
29
30

2. CLASSIFICATION 111

param_grid = {'base_estimator__C': [50, 20, 10, 1.0, 0.5, 0.1, 0.05,
0.017,
'base_estimator__class_weight': ['balanced', 'auto']
}
search = GridSearchCV (base_clf, param_grid, cv=5, scoring='fl_micro')

search.fit (X, vy)

use best classifier to get performance estimate

clf = search.best_estimator_.base_estimator

print (cross_val_score(clf, X, y=y, cv=5, n_jobs=-1, scoring="fl _micro
") .mean())

CODE 46. Training a text classifier.

from sklearn.feature_selection import SelectKBest
from sklearn.feature_selection import chi2
from sklearn.pipeline import Pipeline

set up the sequence

pipe = Pipeline ([
('reduce_dim', 'passthrough'),
('classifier', clf)

1)

specify selection range
N_FEATURES = [1800, 1500, 1000, 500, 300]
param_grid = [
{
'reduce_dim': [SelectKBest (chi2)],
'reduce_dim__k': N_FEATURES
by

fit the model to different feature sets

grid = GridSearchCV (pipe, n_jobs=1l, param_grid=param_ grid, cv=5,
scoring='"fl micro')

grid.fit (X, vy)

save the best selector

selector = grid.best_params_|['reduce_dim']
X_sel = selector.transform(X)
refit classifier on entire, dimensionality-reduced data set

clf.fit (X_sel, y)

annotations

annotation bias

112

31 cv_reg = cross_val_score(clf, X_sel, y=y, cv=5, n_jobs=-1, scoring="

fl _micro")

32 print ("5-CV on train: {}".format (cv_reg.mean()))

[

w NN =

O W 00 ~J O U1 >

CODE 47. Feature selection.
Once you are satisfied with the results and want to apply the classifier to new data:

(1) read in the (unlabeled) new data

(2) use the TfidfVectorizer from 5. above to transform the new instances
into vectors

(3) use the SelectKBest selector from 6. above to get the top /V features

(4) use the classifier from 7. above to predict the labels for the new data

(5) save the predicted labels or probabilities to your database or an Excel file

$#+

read in new data set

ETS

transform text into word counts
IMPORTANT: use the same vectorizer we fit on training data to
create vectors!

Z = vectorizer.transform(new_data['clean_text'])
select features for new data

Z_sel = selector.transform(Zz)

use best classifier to predict labels
predictions = clf.predict (Z_sel)

CODE 48. Apply classifier to new data.

3. Labels

The process of assigning labels to documents is typically called coding in social
sciences. However, that term is already reserved for writing code in computational
sciences, so the general term used here is annotations. That is not the only difference
concerning labels between the fields.

In social science, texts are typically annotated by a single person. However, people
have quirks and biases. They might be tired and inattentive when they annotate a batch,
or they might not be too involved in the task and do it mainly for the money. Annotation
decisions made by the coders of our data introduce annotation bias. Sometimes, biases
can arise because the annotators were not familiar with the language or style in the data,
using their own understanding to label the examples instead Sap et al. (2019).

Even with the best intentions, people do make mistakes and are inconsistent
at times. In NLP, documents are typically annotated by multiple people, often on
crowdsourcing platforms. That redundant annotation allows us to aggregate the
answers and find a more robust, unbiased label. It also allows us to determine 1)
how reliable annotators are, 2) how difficult specific texts were to label, and 3) how

Sw NN

ul

4. TRAIN-DEV-TEST 113

much disagreement exists between annotators. NLP papers will typically report the
inter-annotator agreement and how they aggregated the results. Because multiple
annotations are more expensive, papers sometimes measure agreement only on a subset
of the data. While theoretically cheaper but equivalent to trained annotators in quality
(Snow et al., 2008), it is not always clear whether the demographic makeup of these
anonymous workers is representative (Pavlick et al., 2014). Crowdsourcing also raises
ethical questions about worker payment and fairness (Fort et al., 2011).

To prevent the effect of annotation bias, we can use annotation models (Hovy
et al., 2013; Passonneau and Carpenter, 2014; Paun et al., 2018), i.e., Bayesian
models that infer the most likely answer and the reliability of each annota-
tor. These models help us find biased annotators and let us account for the
human disagreement between labels. Implementations of such models are avail-
able as software (https://github.com/dirkhovy/mace) or web service
(https://mace.unibocconi.it/). We can even use this quantity in the
update-process of our models (Plank et al., 2014).

We are working with matrices and linear algebra operations. So internally, we cannot
use the actual class names (e.g., “informative”, “emotional”, ‘“unrelated’) of our output
labels. Sk1learn will translate all our text labels into numbers to allow us to do linear
algebra. If, however, we want to do this ourselves, sklearn, lets us translate any
collection of labels into number starting from 0, using the LabelEncoder:

from sklearn.preprocessing import LabelEncoder
transform labels into numbers

labels2numbers = LabelEncoder ()

y = labels2numbers.fit_transform(labels)

CODE 49. Translating labels into numbers.

If we use this numerical representation (again, we do not have to), the output of
classifier in sklearn will also be numbers. Since this is harder to interpret, we have
to translate the resulting numbers back into class labels:

1 # translate numbers back into original labels

2 predicted_labels = labels2numbers.inverse_transform(predictions)

CODE 50. Translating predictions back.

4. Train-Dev-Test

When we see a new message in our inbox, we usually know pretty quickly that
it is spam. There are indicators in the text that help us figure that out, based on our
experience with previous spam messages. Classifiers work very similarly.

inter-annotator
agreement

annotation models

training

test set

performance

training set
test set

<~ o U W N

114

We assume that the output label is related to the input via some function that we need
to find by fitting several parameters. This process is called training, and it corresponds
to our experience with previous spam messages. The training goal is to let the machine
find repeated patterns in the data that can be used to estimate the correct output for a
new, held-out input example. This new sample is called the test set, and in our spam
example, it corresponds to a new message in our inbox. We are interested in achieving
the highest possible score of some appropriate performance metric on the held-out test
data.

from sklearn.linear_model import LogisticRegression
classifier = LogisticRegression ()
classifier.fit (X, vy)

predictions = classifier.predict (Z)

CODE 51. Example of a fitting a simple Logistic Regression classifier
and applying it to new data to predict its output.

We will later see how to improve on this basic classifier (Sections 7 and 8). To
do that, however, we first need to discuss how to measure these improvements. That
includes both data handling and metrics.

We have already briefly discussed the role of the held-out sample for prediction,
i.e., the test data on which we measure our classifier’s performance. But where does
that test data come from? If we simply take a new unlabeled text, how can we measure
the predictive performance? If we don’t know the correct labels for those new data
points, what do we compare the predictions against? To simulate encountering new,
unseen instances, we divide our data set of (XX;, y;) pairs into three parts before fitting
our model.

The first and largest part of these three subsets is the training set, which we will use
to fit our model. We also set aside some of the data that we will use as test set, and do
not use or look at it until we are content with our model. We pretend this data set does
not exist. Therefore, we can not use the test set to collect words for our vocabulary, look
at the distribution of labels, or collect any other statistics.

There is one problem with this setup, though. Models usually have several parame-
ters we can set. We will need to find the setting that works best for our particular data
sample. To know whether a specific parameter setting works, we need to evaluate it
on held-out data. However, if we adjust the parameters often enough and measure per-
formance on the test data after every time, we will end up with excellent performance.
But we essentially cheated: we chose the parameters that made it happen! In real life,
we could not know these parameters. We can only measure performance on the test set
once!

4. TRAIN-DEV-TEST 115

So how do we measure the effect a parameter change has on predictive performance
if we cannot use the test set? Instead of the test set, we can use another data set, which
hopefully approximates the test set. We can use this third data set to see how changing
the model parameters affects performance on a held-out data set. This second held-out
data set, which we use to tune our model parameters, is called the development set (or
dev set for short).

You can think about this as preparing for an important presentation to funders. You
can only present to them once (i.e., they are your test set), but you might want to tweak a
few things in the presentation (those are your parameters). Since you cannot do a mock
presentation with the funders, you ask some colleagues and friends to act as a stand-in.
They are your development set. Obviously, the more similar your practice audience is
to the funders, the better you will be able to gauge whether you are on the right track.

For the same reason, we want our development and test set to be as similar to each
other as possible, i.e., equal size, representative distributions over the outcomes, and
large enough to compute robust statistics. To fulfill these conditions, both sets need to
be large enough. If you only had ten documents in your dev set, your results will not be
representative. It is hard to put a fixed number on this, but at the very least, you should
have several hundred instances for both of these data sets.

At the same time, you want your training set to be large enough to fit the model
correctly. If you had too few documents, you might never see enough combinations
to set all the model parameters properly. Again, as a rough guideline, you should have
thousands of instances. For a binary classification problem, 1500 to 2000 instances are a
good start, but more is always better. We will see several ways to improve performance
later (Sections 7 and 8). However, the best way is still to add more training data. Com-
mon ratios of training:development:test data size are 80:10:10, 70:15:15 or 60:20:20,
depending on which ration best satisfies the above conditions.

4.1. Cross-Validation. That is all fine and well, you might say, but I only have a
data set of 1500 documents. I cannot set aside some of them as a test set I use only once,
or I reduce the amount of data I have to fit the data too much. You have a good point.

For this case, you can use k-fold cross-validation. In k-fold cross-validation, we
simulate new data by dividing the data into % subsets, fitting the £ model on £ — 1 subsets
of the data, and evaluating on the k'h subset. See Figure 4 for an example illustration
with three folds. Each document has to end up in the held-out part once. In the end,
we have performance scores from k£ models. The average over these scores tells us how
well the model would work on new data.

This approach has several advantages: we can measure the performance of the
entire data set, simulate different conditions, and get a much more robust estimate.
Again, choosing k depends on the resulting training size and the test portions for each
fold. £ should be small enough to guarantee a decent-sized test set in each fold but
large enough to make the training part sufficient. Common values for £ are 3, 5, or
10. In the extreme, if & = NN, the size of our vocabulary, we fit one model and test it
separately for each document in our corpus. This version is also called Leave-One-Out

development set

k-fold Cross-
validation
Leave-One-

Out Cross-

validation(LOO)

116

PATA SET

TRAINING D ATA

FoLp |

s |
s |V

3

V
TEST PATA GoOLL
IRREZEANNE |
ERRELZEREE o
INNRZEIEN 1

FIGURE 4. Schematic of 3-fold cross-validation

cross-validation.

If we want to have a dev set to tune each of the £ models, we can further split
each of the k — 1 parts of each fold’s training portion. In that case, we train on k — 2

parts and tune and test on k parts each.

In Python, we can get stratified subsets of the data (meaning that the label distribu-

tion is the same in each set):

1 from sklearn.model_selection import StratifiedKFold

2
3
4
5

O 0 J O

skf = StratifiedKFold (n_splits=3)

for train_ids, test_ids in skf.split (X, vy):

fold X train = X[train_ids]
fold_y_train = y[train_ids]

fold X test = X[test_ids]
fold_y_test yltest_ids]

CODE 52. Example of stratified cross-validation.

5. PERFORMANCE METRICS 117

5. Performance Metrics

How good is your spam filter? If you get a spam email that was not caught, you
might say “not great”. The occasional spam email is annoying, but how many does
it actually catch? Clearly, we need to be able to measure these things somehow. If
someone handed you a classifier and said it was 70% accurate, would you use it? What
about 80% accuracy? 90%?

In explanatory models, we usually are only interested in the fit of the model to
the data. That quantity is typically the 72 score. While r? is a performance metric, it is
difficult to generalize it to held-out data: how well does a line fit points that we do not
know yet? In prediction, we are less interested in the fit but in how well the classifier
will predict future cases. We want to measure for how many of the documents in our
test data a model produces the correct answer. Depending on how many classes we
have and how balanced our data set is for these classes’ distribution, there are different
measures we can use. For all of them, we will use the three basic counts: true positives
(TP the model prediction and the actual label are the same), false positives (FP, the
model predicts an instance to be of a specific class, but it is not), true negatives (TN,
the model correctly recognizes an instance not to be of a specific class), and false
negatives (FN, the model fails to recognize that an instance belongs to a specific class).

Measures of fit and performance measures need not be mutually exclusive. Yarkoni
and Westfall (2017) argued that performance measures can and should be used as an
additional measure of robustness. They can also stand in as proxies for other values.
Peterson and Spirling (2018) have shown that a higher predictive accuracy of party
affiliation correlates with periods of higher polarization. The more polarized their
speeches, the easier it is to tell politicians apart.

The most straightforward measure of this performance is accuracy. We simply
divide the number of true positives by the total number of instances, N.

TP+TN
N

Accuracy is a helpful measure, but somewhat less helpful when our labels are unbal-
anced: in a data set where 90% of all labels are class 2, and 5% each are class B and C,
a system that always predicts A would get an accuracy of 0.9 (all performance measures
are usually given as floating-point values between 0 and 1. Sometimes, people also
report accuracy as a percentage, though).

acc =

When our label distribution is more skewed, we need different measures than ac-
curacy. Precision measures how many of our model’s predictions were correct. We
divide the number of true positives by the number of all positives.

TP

= TPy Fp

true positives

false positives
true negatives
false negatives

accuracy

Precision

Recall

F1 score

118

In the case where we have only two equally frequent classes, precision is the same as
accuracy.

Recall measures how many of the positive examples in the data our model man-
aged to find. We divide the number of true positives by the sum of true positives (the
instances our model got right) and false negatives (the instances our model should have
gotten right but did not).

TP
TP+ FN
A model that classified everything as, say, positive, would get a perfect recall for that
class. It does, after all, find all true positives while not producing any false negatives.
However, such a model would obviously be useless since its precision is terrible.

rec =

To get a single number to detect the case above, we want to balance precision
and recall against each other. The F1 score does precisely that by taking the harmonic
mean between precision and recall.

prec X rec

F1 =2X
prec + rec

Let’s look at a number of examples (see Table 1). We will use the following
data, from a hypothetical classifier that identifies animals (1) and natural objects (0).

X | y|y|if target=1 | if target=0
frog |11 TP TN
deer |11 TP TN
wolf | 1 |1 TP TN
dog |11 TP TN
bear |1 |1 TP TN
fish |1]1 TP TN
bird |10 FN FP
cat 110 FN FP
stone | 0| 1 FP FN
tree |00 TN TP

TABLE 1. Example output of a classifier and their valuation for different
target classes.

If we are interested in animals, our target label is 1, and we get the following metrics
from the measures in the 4th column:

=—=07
acc= 1o

5. PERFORMANCE METRICS 119

6
=-=0.86
prec -
6
=—-=0.75
rec g
F=0.81
If instead our target label is O, we get the following metrics:
=—=07
acc 10
L 0.33
rec = - = 0.
Pree=13
1o 0.5
rec=5 =0.
Fl == 04

Note that accuracy is not affected by how many classes we have or what class we
focus on: we only check how often the prediction and the gold data match. Which
classes the matching instances have does not matter. For precision, recall, and F1, we
need to calculate the score for each class separately. If we have positive, negative, and
neutral as labels, and our target class is positive, either of the others is a false negative.

Even if we have several classes and compute precision, recall, and F1 separately,

we might still want to have an overall metric. There are two ways of doing this:

micro-averaging and macro-averaging. micro-averaging
In micro-averaging, we use the raw counts of the positives and negatives, and add macro-averaging

them up. This gives us an average that is weighted by the class size, as larger classes

have a greater influence on the outcome.

ACCmiero = T/10+7/10 = 14/20 = 0.7
PréCmiere = 6/7+1/3=7/10=0.7
T€Crmicro = 6/84 1/2 =7/10 = 0.7
Fimicro = 0.7

In macro-averaging, we first compute the individual scores for each class, and then
take the average over them. This gives us an average that weighs all classes equally.

aCCmacro = (0.74+0.7)/2 = 0.7

Precmacro = (0.86 4+ 0.33)/2 = 0.6
T€Cmacro = (0.5 4+ 0.75)/2 = 0.63
Flmacro = 0.61

Which averaging we should use very much depends on the goal we have and how
much importance we attach to small classes. There are good reasons to use either
scheme.

baseline

w N

= a1

w N

ul

120

In Python, we can get all of these performance measures by comparing our classi-
fier’s predictions against the gold labels of the held-out data:

from sklearn.metrics import fl_score, precision_score, recall_ score

prec = precision_score(gold, prediction, average="micro")
rec = recall_score(gold, prediction, average="micro")
fl = f1_score(gold, prediction, average="micro")

CODE 53. Examples of evaluation metrics.

If we do not have a dedicated heldout set, we can get the average score via cross-
validation:

from sklearn.model_selection import cross_val_score

prec_cv = cross_val_score(clf, X, y=y, cv=5, n_jobs=-1, scoring="
precision_micro")

rec_cv = cross_val_score(clf, X, y=y, cv=5, n_jobs=-1, scoring="
recall_micro")

fl_cv = cross_val_score(clf, X, y=y, cv=5, n_jobs=-1, scoring="

fl_micro")

CODE 54. Example of micro-averaged evaluation metrics in cross-validation.

Instead of micro-averaging, we can use macro-averaging by changing the scoring
parameter to M_macro, where M is any of the above metrics. For a full list of all the
available cross-validation scoring functions, you can use this code:

1 import sklearn.metrics as mx
2 sorted (mx.SCORERS.keys ())

CODE 55. Available evaluation metrics for cross-validation.

6. Comparison and Significance Testing

When we train a classifier, we want to use it in the future on unseen data. We have
seen how we can measure and predict that performance and guard ourselves against
overfitting. However, while performance measures give us a good sense of the model’s
capabilities, it does not tell us anything about the classification task’s difficulty. Imagine
a colleague tells you about their classifier that got an F1 score of 0.9 in distinguishing
advice from non-advice in a set of social media posts. It turns out, though, that less
than 1% of the observations are advice. So what did the classifier learn? Is it really
finding those 1% of advice cases, or has it “given up” and just classified everything as
none-advice? If the data is extremely imbalanced (where most examples are from the
same class), a 0.9 F1 score performance does not mean much.

To get a sense of the possible headroom, researchers often run a very simple baseline

J o U D W N

6. COMPARISON AND SIGNIFICANCE TESTING 121

first. This baseline can be an “algorithm” that always predicts the most frequent class
label (majority baseline) or another simple model. With non-linear models (Section
13), we will see that it makes sense to compare against a linear model’s baseline. A
model that does not even outperform the baseline is probably not on the right way.
After all, it does not make sense to use a more complicated model where a simple one
suffices.

Sklearn provides a simple implementation of the most-frequent-label classifier.
Since the classifier always returns the most frequent label for everything, we do not
even have to use cross-validation. Instead, we can look at the performance of the entire
data.

from sklearn.dummy import DummyClassifier
from sklearn.metrics import fl_score

most_frequent = DummyClassifier (strategy='most_frequent')
most_frequent.fit (X, vy)

most_frequent_predictions = most_frequent.predict (X)

print (f1_score(y, most_frequent_predictions, average='micro'))

CODE 56. Running a baseline classifier that predicts the most frequent label.

What if our model outperforms the baseline by some margin? Does that mean an-
other person will see the same results when running the model on their data? Are the
improvements over the baseline that we reported a fluke, or do they generalize? This
question is essentially at the heart of statistical significance tests. °

There are several statistical significance tests out there. However, it requires some
knowledge to pick the right one for the task at hand (Berg-Kirkpatrick et al., 2012).
For many NLP problems, though, bootstrap sampling is a valid and interpretable test.
The intuition behind it'is simple: when we compare the results of our model against
a baseline, we only have one comparison, which might be biased. The result could
very well be due to the particular composition of the data and disappear on a different
data set. The best way to address this concern is to test on more data sets. However,
if we do not have other samples, we can approximate the effect by simulation. We
create different data sets by repeatedly sampling from the data with replacement (which
is called bootstrapping). We compare both baseline and model performance on each
of those samples and record how often that difference is more extreme than on the
complete data. The central limit theorem says that repeated measures taken from
a population follow a normal distribution. Think of a stadium full of people, from
which you repeatedly draw five and measure their average height. Most of the time,
you will get an average height, and only rarely will you get all the tall people. The

average heights will follow a normal distribution. We can use this insight to identify

SThere are some more factors to consider: models are sensitive to domain differences — a model
trained on newswire will not work well on Twitter data. But say our user wants to apply the model to the
same domain.

majority baseline

statistical signifi-
cance

bootstrapping

central limit theorem

122

samples where the difference between baseline and model is different from the base
case. There are two ways to measure this. The first is the number of samples where
the difference deviates more than two standard deviations from the original difference
between the systems. The other way is to count negative differences (meaning samples
where the better system on the base case is actually worse). The latter case might seem
more intuitive, but it requires some assumptions. 1) the mean sample difference is the
same as the difference on the entire data set, and 2) the distribution over differences is
symmetrical. Under those conditions, it is equivalent to the first version. Most NLP
measures will fulfill those conditions.

Take the examples in Table 2: on the entire sample, system A is 0.24 points better
than system B. If we take enough samples computing the difference between A and
B, these differences will follow a normal distribution, and the average difference will
be very close to 0.24. We are asking with bootstrap sampling: in how many of these
samples is the difference at least twice as extreme as on the base case? This setup
requires us to put the system with a higher score on the entire data set first. We collect
ten samples here (this is only for demonstration purposes, we usually would gather at
least 10,000).

A B difference

base 82.13 81.89 0.24
1 81.96 82.03 -0.07
2 81.86 82.61 -0.75
3 81.70 81.44 0.26
4 82.42 82.77 -0.35
5 81.89 81.06 0.83
6 81.39 81.24 0.15
7 81.96 81.58 0.37
8 82.57 81.65 0.92
9 82.50 82.67 -0.17
10 83.07 81.84 1.23

TABLE 2. Example performance of two systems on the entire data set
(base) and on 10 samples.

Figure 5 shows the distribution over the observed differences. As expected, their
average difference is about 0.24, the same as the difference between the systems on the
entire data. However, in three cases (samples 5, 8, and 10), the difference is more than
twice the base difference. Because the sampled differences follow a normal distribution,
and because the mean difference is small, there are some cases where A is actually worse
than B. These cases indicate that the observed difference is not significant. The p-value
here would be 3/10 = 0.3. (Again, in a real test, we would use a much higher number

6. COMPARISON AND SIGNIFICANCE TESTING 123

of samples, which would make the result more exact and more reliable). As the base
difference increases, there are fewer and fewer extreme cases.

2.00 - —

1.75 A

1.50

Frequency
- I
o N
o w
1 1

0.75

0.50 P
0.25 ™

0.00 T T T T T T T T
-15 -1.0 -0.5 0.0 0.5 1.0 15 2.0

FIGURE 5. Distribution over differences between the two systems on 10
samples

1 import numpy as np

3 def bootstrap_sample (systeml, system2, gold, samples=10000, score=
precision_score) :

4 W
5 compute the proportion of times the performance difference of the
6 two systems on a subsample is significantly different from the
7 performance on the entire sample
8 W
9 N = len(gold) # number of instances

10

11 # make sure the two systems have the same number of samples

12 assert len(systeml) == N and len(system2) == N, 'samples have

different lengths'

13

14 # compute performance score on entire sample

15 base_scorel = score(gold, systeml, average='binary')

16 base_score2 = score(gold, system2, average='binary')

17

18 # compute the difference

19 basedelta = base_scorel - base_score?

20 assert basedelta > 0, 'Wrong system first, systeml needs to be

better!'

21

22 systeml = np.array(systeml)

23 system2 = np.array(system2)

24 gold = np.array (gold)

overfitting

featurize

25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46

124

p =20
for i in range (samples) :
select a subsample, with replacement
sample = np.random.choice (N, size=N, replace=True)

collect data corresponding to subsample
samplel = systeml [sample]
sample?2 = system2 [sample]
gold_sample = gold[sample]

compute scores on subsample

sample_scorel = score(gold_sample, samplel, average='binary')
sample_score2 = score(gold _sample, sample2, average='binary')
sample_delta = sample_scorel - sample_score?2

check whether the observed sample difference is at least
twice as large as the base difference
if sample_delta > 2xbasedelta:

p +t=1

return p/samples
CODE 57. Bootstrap sampling for statistical significance tests.

7. Overfitting and Regularization

Imagine a (slightly contrived) case where for some reason, most positive training
examples in a text classification task contained the word “Tuesday”. So, the presence
of “Tuesday” is an excellent feature to predict positive instances from the classifier’s
perspective. But suppose the new instances we encounter in our test set never contain
the word “Tuesday”. In that case, the model comes up empty-handed when it tries
to classify them. It has been overfitting to the training data. This issue is similar to
memorizing vs. understanding. If we memorize that 2 + 2 = 4, we might be surprised
when we are told that 3 + 1 is also 4. If, instead, we understand how addition works,
we will be much less surprised by future cases.

Training (i.e., fitting) a model on too many features can cause the model to memorize
parts of the training data. While that is excellent for predicting those outcomes
correctly, it is entirely useless when encountering new examples.

In most social science scenarios, we only use a small number of independent vari-
ables. In machine learning, we often use thousands of them. When working with text,
one of the easiest ways to featurize the input is to make each observed word type a
feature. Depending on the estimate, English has between 100, 000 and 500, 000 words,

7. OVERFITTING AND REGULARIZATION 125

so the number of features quickly becomes enormous. This number of independent
variables is frowned upon in social sciences — and for a good reason.

In the extreme case, if we had more independent variables than observations, we can
simply find one variable that explains the data. However, it is hard to know whether this
explanation has any validity. In machine learning, this situation is also frowned upon,
but for different reasons.

In prediction, we would like to prevent the model from perfectly memorizing the
training data. If it does, it will not be able to predict new instances accurately. (Re-
member the example of 2 + 2 = 4 and 3 + 1 = 4). This point is where the bias term b
we mentioned earlier comes back into it. Choosing a bias that prevents the model from
overfitting is called regularization. It is always a good idea to regularize the models, regularization
even if we do not want to use them for prediction.

We can think of regularization as a way to make memorizing the data harder. As
a result, the model is more prepared to handle different scenarios in the future. It is a
bit like going running with a snorkel or swimming with a buoy in tow: by learning to
overcome these conditions in training, we are better prepared for the real thing.

The simplest way to use a bias term is to add some random noise to the data.
Because the error is random, the model can never fit it perfectly, so we help avoid
overfitting. In social science, the bias term is often called an “error term” since we error term
assume some measurement is associated with our inputs.

However, randomness is hard for computers, so we often use normally (in the
sense of Gaussian) distributed noise, which in itself is regular. It is already a strong
assumption that the noise we encounter is normally distributed. In language, the error
distribution might actually follow a power-law distribution.

Instead of guessing at the error distribution, we can tie the bias term to the pa-
rameters’ distribution. Ideally, we would like a model that considers all features, rather
than putting all its eggs in one basket (as in the “Tuesday” example above).

Essentially, such a model would distribute the weights for each feature relatively

evenly. We can measure this by looking at the L.2 norm of the weight vector: the root L2 norm

of the sum of squares of all weights. The more evenly distributed the weights are, the

smaller this term becomes. The effect is that the model is forced to “hedge its bets” by

considering all features, rather than putting all its faith in a few of them. It is, therefore,

better equipped to deal with future cases. This process is called L2 regularization. L2 regularization
The regularization term is usually weighted by a constant called .

y=W. -X+\|W|2

Ridge regression

L1 regularization

Lasso regression

126

The L2 norm uses the root of the sum of squares as an error term. Taking the square
removes any signs on the elements:

The L2 norm has unique analytical solutions, but it produces non-sparse coefficients
(every element has a non-zero value). Therefore, it does not perform variable selection.
When we use L2 as regularization for Logistic Regression, it is also known as Ridge
regression.

Theoretically, we can also minimize the L1 norm of the vector (L1 regularization).
Here, we use the regular norm of the coefficient vector as the error term:

N
Wl = fwi
=1

The L1 norm produces sparse coefficients, i.e., it sets many coefficients to 0, and there-
fore has many possible solutions for a given vector. Due to the vectors’ sparsity, they
all amount to an implicit variable selection: we can ignore all entries with a value of 0
and focus on the others. Using L1 regularization for Logistic regression is also known
as Lasso regression.

Vi

v

L

Vi

®

FIGURE 6. Examples of L1 vs. L2 norm in Euclidean space (modified
from Wikipedia)

To see the difference between the two norms, see Figure 6: the red, blue, and yellow
lines are all possible L1 solutions with the same value (12), whereas the green line is the
L2 solution (8.49). Norms are closely related to distance measures like the Manhattan
distance (equivalent to the L1 norm) or the Euclidean distance (which is equivalent to
the L2 norm).

1
2

e
S

-
5
6

8. MODEL SELECTION AND OTHER CLASSIFIERS 127

More rarely, we might use the L0 norm for regularization, which is the sum of all
elements in the weight vector raised to their Oth power (i.e., either O or 1). That norm is
simply the number of non-zero coefficients. It’s a very aggressive way of eliminating
uninformative features.

In practice, L2 regularization works best for prediction, though. In sklearn,
logistic regression is already set to use L2 regularization, with a C parameter that stands
for the A\ weight. L1 is most useful in feature selection (see page 133). If we want to
use L1, we have to explicitly select it via the penalty keyword:

lasso = LogisticRegression (penalty='11")

CODE 58. Defining a Logistic Regression classifier with L1 regulariza-
tion (Lasso).

8. Model Selection and Other Classifiers

There are, of course, plenty of other classifiers than Logistic Regression, and
sklearn provides many of them. Thankfully, they all follow the same logic, so we
can use the same fit () and predict () functions from before. In practice, we only
need to change one line: where we define the classifier.

Note that each model has a specific set of parameters that govern its behavior (as
the regularization parameter for Logistic Regression). To get the best classifier, we need
to tune those parameters. This step is called model selection. A model is just one
particular combination of parameters. To get the best possible result on our held-out
data, we select the combination (model) that does that.

We can simply iterate over a set of possible values and record which one results in
the highest performance:

from sklearn.metrics import cross_val_score

best_c = None
best_fl score = 0.0

for ¢ in [50, 20, 10, 1.0, 0.5, 0.1, 0.05, 0.017]:

clf = LogisticRegression (C=c, n_jobs=-1)
cv_reg = cross_val_score(clf, X, y=y, cv=5, n_jobs=-1, scoring="
fl micro") .mean ()

print ("5-CV on train at C={}: {}".format (c, cv_reg.mean()))
print ()

if cv_reg > best_fl_score:
best_fl_score = cv_reg
best_c = ¢

model selection

16
17

kernel function

support vectors

hyperplane

128

print ("best C parameter: {}".format (best_c))

CODE 59. Finding the best regularization parameter for Logistic Regression.

If you have few data points (less than 2000), trying a Support Vector Machine can
help. If you have a lot of data points, Naive Bayes can be an option.

8.1. Support Vector Machines. A popular classifier is the Support Vector Ma-
chine (SVM). SVMs use a kernel function to project the data into a higher-dimensional
space and take the similarities between instances in that space into account, which ac-
counts for much of their predictive power. They also try to find the decision boundary
between our classes that gives us the most “room” between them. It does that by com-
puting support vectors, i.e., vectors parallel to the decision boundary (see Figure 7).

LINEAR CLASSIFIER

" PossiBLE
. DPECISIoN
v BoUNRARIES

\ 4

FIGURE 7. Comparison of a regular linear classifier and an SVM

SVMs, therefore, often have better performance than Logistic Regression on small
to medium-sized data sets. However, they become too slow for more massive data sets.
Performance depends crucially on the chosen kernel, which also requires optimization
of various parameters. In essence, a kernel function implements a simple way to com-
pute the similarity between two examples in a higher-dimensional space. More dimen-
sions make it easier to find a hyperplane that separates our classes clearly, even if they
were not separable in the original feature space. Some issues remain, though, see Figure
8.

In sklearn, SVM is implemented as SVC (the C stands for classification).

8. MODEL SELECTION AND OTHER CLASSIFIERS 129

® ®
e @%
® @4 vor
LINEARLY SEPARABLE

®
®
@ °%e o

./,wp FEATUREl DIMENSION

IPEAL

IMPEEFECT SEPARATIONS
SEPARATION

FIGURE 8. Example of better class separation by adding more dimensions.

1 from sklearn.svm import SVC
2 svm = SVC()

CODE 60. The SVM classifier in sklearn.

The time complexity of an algorithm (e.g., how many operations we need to fit a time complexity
model to the data) depends on the input. Specifically, to train a classifier, it depends
on the number of observations and features. For Logistic Regression, both of those are
roughly linear, so if we double the number of observations and features, it will take
twice as long to fit the data. For an SVM, these numbers are cubic for the observations
and quadratic for the features. So doubling the observations and features will take the
algorithm exponentially longer to fit. This increase is due to the objective function of the
SVM, which involves both computing a kernel matrix (i.e., the similarity of all instances
with each other) and solving a quadratic function.

The difference is mainly due to two facts: 1) SVMs can not be parallelized, Logistic
Regression can be. The first fact is partially due to 2) the SVM has a more complex
objective function: rather than finding a decision boundary, the SVM tries to find the

support vectors
slack

fractional or
pected counts

ex-

130

decision boundary that maximizes the distance between classes (the support vectors
that give the classifier its name), while allowing for some slack (i.e., observations being
on the wrong side of the decision boundary).

For details on the time complexity of classification algorithms, see Mohri et al.
(2018).

8.2. Naive Bayes. The Naive Bayes (NB) algorithm is a very simple generative
model. The generative story (i.e., how the observed feature vector was generated) be-
hind NB is simple: we pick a class according to some distribution P(y). Based on
that label, we then produce each of the observed feature values with some probability
P(X|y). The features are independent of one another, i.e., feature 2 is not influenced
by features 1 or 3 (or any other, for that matter), only by the label. This assumption is,
of course, somewhat simplistic (hence the name Naive Bayes), especially when our fea-
tures are words in a sentence. Words tend to occur together following specific patterns,
not independently of each other. In practice, though, NB works reasonably well, and it
has three advantages. 1) it is easy to implement, 2) it is very straightforward to interpret
the model, 3) it scales really well to enormous amounts of data because 4) 1t parallelizes
well.

All we have to do is go through our instances, count how often we see each label,
and normalize by the total number of instances. That gives us the distribution over class
labels P(y). Similarly, we count how often each feature occurs with each class and
divide that by the number of times we have seen that class. That gives us the conditional
probability distribution P(X|y) of features given a class. To label a new instance, we
simply sum all our conditional probabilities from the present features, compute all class
probabilities, and then pick the highest one as a label. Or, mathematically:

N
g = argmax F(y;) 11 PGl
j=1
Here, arg max just means “pick the value that gives you the highest result for the fol-
lowing equation”.

In sklearn, NB is implemented in various forms, but the one we would use with

discrete features is the multinomial NB:

1 from sklearn.naive_bayes import MultinomialNB
2 nb = MultinomialNB ()

CODE 61. NBin sklearn.

NB can also be made to incorporate unlabeled data. If we have no label, we need
to compute how often we would see each class hypothetically. This quantity is called
fractional or expected counts. We can then use those counts as a new distribution to
compute how often we would have seen the features activated. This part is the E-step
of the EM algorithm. In the end, we normalize our fractional counts to make them
probability distributions again. These should explain the data a bit better, i.e., when we

9. MODEL BIAS 131

compute the likelihood that these parameters generated the data (P(y) and P(X|y)), it
should be higher than when we started.

We can repeat the E and M-steps indefinitely. We will always get a little bit better
in terms of data likelihood, but at some point, it will not make a difference anymore. To
measure that, we can compute the difference between the data likelihood of the previous
iteration and the current one. When that difference is smaller than some threshold, we
stop. Alternatively, we can run for a fixed number of iterations and stop after that. In
practice, people typically set a maximum number of iterations but also measure the data
likelihood.

9. Model Bias

Models are their own source of biased predictions. Concretely, the tendency of a
model to rely on minor differences between subjects to satisfy the objective function
and make reasonable predictions (overamplification). Unchecked, the model can max-
imize its objective score by amplifying the difference when predicting new data and
creating a larger imbalance than in the original data. Essentially, the model might give
the correct answers, but for the wrong reasons. Yatskar et al. (2016) have shown that in
an image captioning data set, 58% of the captions for pictures of a person in a kitchen
mentioned women. A small but noticeable difference, which could be corrected by sam-
pling. However, as Zhao et al. (2017) showed, a standard statistical model trained on
this slightly biased data ended up predicting the gender of a person in a kitchen picture
to be a woman in 63% of the cases.

The cost of these false positives seems low. A user might be puzzled or amused when
seeing a mislabeled image or receiving an email addressing them with the wrong gender.
However, relying on models that produce false positives may lead to bias confirmation
and overgeneralization. Some of these false positives might amuse us, but would we
accept them if the system predicted sexual orientation and religious views rather than
age and gender? For any text prediction task, this is just a matter of changing the target
variable and finding some data.

Another problem of overamplification is the proliferation of stereotypes. Rudinger
et al. (2018) found that coreference resolution systems (which link a pronoun to the
noun they refer to) were biased by gender. In the sentence, “The surgeon could not
operate on her patient: it was her son,” the model does not link “surgeon” and ‘“‘her.”
The cause of this inability is presumably biased training data, but the effect feeds into
gender stereotypes. Similarly, Kiritchenko and Mohammad (2018) showed that senti-
ment analysis models changed their scores for the same sentences when they replaced
a single word. E.g., replacing a female with a male pronoun or replacing a typically
“white” name with a typically “black" name. Both “She/He made me feel afraid” and
“I made Heather/Latisha feel angry" result in higher scores for the second case.

9.0.1. Counter measures. To address the overgeneralization of models, we can ask
ourselves, “would a false answer be worse than no answer?” Instead of taking a tertium
non datur approach to classification, where a model has to (and will) produce some

overamplification

bias confirmation
overgeneralization

adversarial learning

132

answer, we can use dummy variables that say “unknown.” We can also use measures
such as error weighting, which incur a higher penalty if the model makes mistakes on
the smaller class. Alternatively, we can use confidence thresholds below which we do
not assign a label.

Recently, (L1 et al., 2018) have shown that adversarial learning (a specialized ar-
chitecture in neural networks) can reduce the effect of predictive biases. It even helps to
improve the performance of the models!

O U W N

10. FEATURE SELECTION 133

10. Feature Selection

We have our data, we have decided on a classifier, and made sure it does not overfit.
However, we are not sure we maxed out the performance with these choices. Can we
do more to improve performance?

If we are using a BOW representation and a linear model, we can fit a classifier
(with regularization!), and then inspect the magnitude of the coefficients. This feature
selection can assist us in improving performance by choosing a smaller, more informa-
tive set of features. Naturally, if we use feature selection to improve performance, we
have to do it on the training data. We cannot peak at the development or the test data!
However, analyzing features can give us an exploratory overview of the correlation
between our features and the target class. This correlation can be informative to
discover new facts. For example, which words best describe each political candidate
in a primary (see https://www.washingtonpost.com/news/monkey—
cage/wp/2016/02/24/these-6-charts—show-how-much—-sexism-
hillary-clinton-faces-on-twitter).

10.1. Dimensionality Reduction. We have looked at dimensionality reduction ear-
lier in the context of visualization (see page 94). However, we can also use it to improve
our performance. Rather than fitting a model on a large set of features, we can use
dimensionality reduction techniques. They allow us to find a smaller number of dimen-
sions that still capture the variation in the data, but provide fewer chances to overfit by
exploiting spurious patterns in the data. This lower-dimensional representation could,
for example, be the U matrix from SVD.

If we use a lower-dimensional version of a BOW matrix, the individual dimensions
do not mean anything anymore. I.e., the columns of our matrix are no longer counts or
TFIDF values. We cannot map them back to the terms we used as features.

10.2. Chi-Squared. x? (or Chi-squared) is a test that measures the correlation be-
tween a positive feature and the categorical outcome variable.

In sklearn, we can use the feature_selection package to implement the
selection process with x?2, by sorting the features according to their correlation, and
keeping only the top k.

from sklearn.feature_selection import SelectKBest
from sklearn.feature_selection import chi2

selector = SelectKBest (chi2, k=1500) .fit (X, vy)

X_sel = selector.transform(X)
print (X_sel.shape)

CODE 62. Selecting the top 1500 features according to their y? value.

feature selection

1
2
2

9

4

oy U1

[Co RN

e

134

10.3. Randomized Regression. Logistic regression is a generalized linear model,
where the log odds of the response probability is a linear function of the independent
variables. The coefficients of these variables are estimated via maximum likelihood,
and are then subsequently interpreted. If we use the model on word count data and a
target category, we can analyze the importance of individual terms by inspecting the
magnitude of the coefficients for those terms.

However, this approach presupposes that we have already selected the independent
variables. In the case of text, however, the vocabulary size, and therefore the number
of independent variables, can be massive. Yet their individual occurrences are sparse
(some words occur only once even in large corpora). It is often impossible to know a
priori which variables to select.

There are several ways in which we can potentially select a subset of informative
variables: We can remove variables with non-significant co-occurrence statistics. How-
ever, this requires a large data set and does not guarantee the best model. We can fit
all possible models on the entire data and pick the one with the best fit, using some
measure of fitness. However, the large number of possible models makes this approach
computationally prohibitively extensive. It is also not robust to overfitting. We can fit
a model on the entire data, and use an L1 penalty term. This constraint causes unin-
formative variables to receive 0 weight during fitting. However, this method is highly
reliant on extensive data and sufficient observations. To address the last concern, we
can randomize the previous method. We collect repeated random subsets of the data, fit
an L1-penalized (Lasso) model to each and aggregate the coefficient vectors. Variables
that frequently receive a high coefficient are then selected. When the target variable is
binary, this process is randomized logistic regression (or Stability Selection, see Mein-
shausen and Biithlmann (2010))

Intuitively, we simulate a range of different conditions, and pick the variables that
are informative independent of the condition. In practice, we fit 200-1000 independent
Logistic Regression models on the data, each on a random subset sampled with replace-
ment. For each model, we use a different weight for the L1 regularization parameter,
controlling how aggressively coefficients are driven to 0. Variables that have a score of
at least 0.5 (i.e., they received a positive coefficient weight in over 50% of the models)
can be considered informative.

from sklearn.linear_model import LogisticRegression
import numpy as np

def positive_indicatorsRLR(X, y, target, vectorizer,
selection_threshold=0.3, num_iters=100) :

n_instances, n_feats = X.shape
pos_scores = [] # all coefficient > 0
neg_scores = [] # all coefficient < 0

choices for lambda weight

10

11
12
13
14
15

16
17
18

19
20
21
22
23
24
25
26
27
28
29

30

31
32
33
34

35

36
37
38
39
40

41

42
43

10. FEATURE SELECTION 135

penalities = [10,5,2,1,0.5,0.1,0.05,0.01,0.005,0.001,0.0001,
0.00001]

select repeated subsamples
for iteration in range (num_iters) :

initialize a model with randomly-weighted L1 penalty

clf = LogisticRegression (penalty='11"', C=penalities[np.random
.randint (len (penalities))])

choose a random subset of indices of the data with replacement
selection = np.random.choice (n_instances, size=int (
n_instances % 0.75))
try:
clf.fit (X[selection], ylselection])
except ValueError:
continue

record which coefficients got a positive or negative score
pos_scores.append(clf.coef_ > 0)

neg_scores.append(clf.coef_ < 0)

normalize the counts

pos_scores = (np.array(pos_scores) .sum(axis=0)/num_iters) .reshape
(-1)
neg_scores = (np.array(neg_scores) .sum(axis=0)/num_iters) .reshape
(-1)

find the features corresponding to the non-zero coefficients
features = vectorizer.get_feature_names ()

pos_positions = [i for i, v in enumerate (pos_scores >=
selection_threshold) if v]

neg_positions = [i for i, v in enumerate (neg_scores >=
selection_threshold) if v]

pos = [(features[i], pos_scores[i]) for i in pos_positions]
neg = [(features[i], neg_scores[i]) for i in neg_positions]

posdf = pd.DataFrame (pos, columns='term score'.split()).
sort_values ('score', ascending=False)
negdf = pd.DataFrame (neg, columns='term score'.split()).

sort_values ('score', ascending=False)

return posdf, negdf

CODE 63. Randomized Regression for variable selection.

136

FIGURE 9. Effect of retrofitting on 500 instances in a ten-class embed-
ding space. Each color represents one class label. Before retrofitting
(left), instances are based on linguistic information. After retrofitting on
labels (right), classes are more clearly separated.

11. Retrofitting to Increase Within-Class Similarity

We have previously seen (page 94) how we can use retrofitting to include non-
linguistic information in embeddings. However, the same technique can be used to
make classes more linearly separable (Hovy and Fornaciari, 2018). Figure 9 shows
an example for 500 data points from ten classes (each class is labeled with a different
color). Retrofitting sorts the instances into clusters based on color.

Instead of external information, we can also use the class labels as equivalence
classes, i.e., Q = {(d;,d;|ly; = y;)}. In essence, we separate classes in the embedding
space, making them easier to differentiate by a classifier. We achieve this separation by
defining the neighborhood of each instance to be all instances with the same class label.
This neighborhood definition effectively improves classification performance.

However, we can only retrofit the embeddings of authors in the training set Dy.qip,
since we need information about the class label in order to construct §). HO\ivever, the
retrofitting process changes the configuration of the embedding space (into Dy;.4;), SO
a separating hyperplane learned on Diyain will not be applicable to a test set Dy, in the
original embedding space.

In order to extend the homophily information to instances in the test set, we use a
translation matrix T" (a 300 x 300 matrix), which approximates the transformation from
the original training data matrix Dy,..;, into the retrofitted matrix lA)tmm. We obtain T
by minimizing the least-square difference in Dy,qip, - 1T = Etrain-

T captures the retrofitting operation, and allows us to modify the test instances’
representations as if their classes were known, despite the absence of label information.
In particular, by applying 7' to the embeddings in the unlabeled test set Dy, we obtain
a retrofitted version D;est that preserves the transformation learned on the training data.
Since the least-square approximation is not perfect, we find that in practice fitting a

11. RETROFITTING TO INCREASE WITHIN-CLASS SIMILARITY 137

classifier on the approximation Dy,..;, - T" works better than using Dtrain, acting as a
regularizer.

part-of-speech
ging
POS tagging

tag-

138

12. Structured Prediction

In all of the previous chapters, we have looked at documents as individual elements.
A document was either a word on its own or a sentence as the sum of its words. In
classification, we try to find the best single label for this input.

However, one of the core properties of language is that it is sequential. We perceive
words to follow each other, and to have a position in a sentence. What if we want to
find a sequence of labels, one for each word in the sentence? Say we have a sentence
like “They can can cans”, and we want to find the parts of speech (noun, verb, adjective,
etc.) for each word. This task is called part-of-speech tagging, and is one of the early
success stories of NLP.

We could try to just generate all possible tag sequence for the sentence (see Figure
10) and use each of those unique sequences as a possible label in a classification task.
But there is a problem...

T00 MANY POSSIBLE [ABELS!

DET NOUN VERB ADP VERB)
DET NOUN VERB ADP ADJ)]
DET NOUN VERB ADP NOUN|

My hovercraft is really bling

CLASSIFICATION: | [ABEL
FOR THE ENTIRE INPUT

FIGURE 10. Naive listing of all possible tag sequences

Say each word has on average 1.2 tags, and a sentence has 17 words, like this one.
That’s 1.2!7, or about 22 possible labels. For just one short sentence! Some sentences
have 40 or more words, meaning 1470 or more unique labels. And we have to add up
all those unique labels. .. Clearly, we cannot afford to do that, or we would end up with
a 10, 000-way classification. We will have to do something else.

Sequence is also important in grammatical and semantic long-range dependencies.
Nouns can occur both before and after verbs. They act either as the subject of a sentence,
or as its object. l.e., either as the thing doing the action (the verb), or as the thing
something is done to. For example, the subject-verb agreement (here, er and begegnet)
in this German sentence:

12. STRUCTURED PREDICTION 139

“Wenn er aber auf der Strasse der in Sammt und Seide gehiillten jetzt

sehr ungenirt nach der neusten Mode gekleideten Regierungsrdithin

begegnet.”®

Such long-range dependencies are also important for relation extraction. Say

we wanted to extract the fact founded_by (Amazon, Jeff Bezos) from the
sentence "Jeff Bezos, or what Dr. Evil would look like on steroids, went from book
seller to billionaire after he founded Amazon in 1994." The relevant parts are far apart,
and we would have to completely ignore the inserted clause. Dependency is also
important to determine the scope of the negation in “This is not in any sense of the
word a funny movie.”

All of these examples are cases for structured prediction. In structured predic-
tion, we want to find the best sequence of labels, given a sequence of words. The
sequential nature of sentences makes words context-dependent: they can mean very
different things, depending on the context in which they occur. They are ambiguous.
In the sentence “I will see the show tonight”, the word “‘show” is a noun. However, in
the sentence “Let me show you something”, the same word is a verb. So to decide the
best label for each word, we have to take the context into account.

There are some regularities that help us. Examples of “show” as a noun include
sentences like “His show was cancelled” or “We went to see a show together.” Other
examples of “show” as a verb are “She wanted to show that she could do it” or “They
show us a good time.”

Even though the words are all different, there are some regularities in the tags of the
preceding words. In both cases of “show” as a noun, the preceding word is a determiner.
In both cases of the verb “to show”, the preceding word is a pronoun.

So to determine the part of speech of a specific word, we need to look at the part of
speech of the preceding words. Of course, their part of speech, in turn, depends on their
preceding words’ parts of speech, etc. This is starting to look like infinite recursion.

There are, however, two facts that can help us break that recursion cycle. The first
helper are unambiguous words. Many words have only one possible tag. Not only
does that make prediction extremely trivial, it also helps us to find regularities in tag
sequences. The second helping fact is that there is a natural end to the infinite recursion:
if we go back far enough, we reach the first word of a sentence. And the tag history
of all first words is the same: we can imagine that the sentence beginning has its own
unambiguous special tag, say START.

These two facts together give us a good starting point to tackle the structured predic-
tion problem. Guess the tag for the first word, given that the previous tag was START,
then proceed in the same manner for each word (see Figure 11).

The example is from Mark Twain’s essay The Awful German Language, and it’s slightly old-
fashioned, but only slightly exaggerated.

scope

structured predic-
tion
context-dependent
ambiguous

140

THIS TAG..

LEPENDS

LEPENDS ON oN THIS

THIS TAs, TAs,
LEPENDS WHICH. WHICH..
ON.)

A\ A\ AV

START DET NOUN AUX VERB ADV

SomE WorpsS ARE UNAMBIGUOVS (= ONLY ONE
POSSIBLE TAG)
THE START OF A SENTENCE IS UNAMBIGUOVS

FIGURE 11. Imagining a START tag for the sentence beginning helps.

12.1. The Structured Perceptron. The algorithm that implements this intuition is
Structured Percep- the Structured Perceptron Collins (2002). The central prediction problem it solves
tron can be expressed mathematically as

D
T|W = arg max dz; O Pa(W,Y)

In other words, we are given a sequence of words, W (a vector of N words,
wy, wsy, ..., wy). If we are searching the best tag sequence 7' (which is a vector of tags
t1,19,...,tN), we return the best label sequence Y (out of all possible label sequences
Y). To get Y, we compute the sum of all features & multiplied with their respective
weight 6.

Each of those features is the result of a function that examines W and the predicted
tags Y.

N
(W, T) = Z Ga(wi, ti-g, i1, W,i)
i=1

Sw N

QO J o U

12. STRUCTURED PREDICTION 141

The global features of a sentence, ¢ are simply the sum of all the local features, ¢;,
derived from the words w1, wo, ..., wy. Each local feature is derived from the word w;,
the two previous (true or predicted) tags ¢;_o, 1, the sentence as a whole (1), plus an
indicator of the position, 7.

To set the weights, we update each 6, after each sentence, moving the weight closer
to the features derived from the true label sequence and further away from the predicted
ones:

Oa = Oa + Ca(W,T) — ©4(W,Y)
If the features on the predicted tags are the same as the features of the true tags, we
don’t need to update.

While the math can look intimidating, the algorithm itself is relatively simple.
In pseudo-code, it only takes a few lines:

for each iteration:
for words, true_tags in examples:
features = get_features (words, true_tags)
prediction = predict (features)
if prediction != true_tags:
for feature in features:
weights[feature] [true_tags] += 1
weights[feature] [prediction] -= 1

CODE 64. Pseudo-code for the Structured Perceptron.

The Structure: Hidden Markov Models. The assumed structure underlying the al-
gorithm is a second order Hiddem Markov Model. HMMs are used in a variety of
applications, but they follow a very simple idea. What we can see (the words) was gen-
erated by something we cannot see (the tag sequence), one step at a time. l.e., someone
first created a sequence of tags, and then turned each of them into a word. This is our
generative story. It sounds a bit strange (this is not how we usually form sentences),
but it captures the notion that many sentences have the same syntactic structure.

And that helps us model the effect of previous tags. Each tag is influenced by the
ones that came before it. This assumption is one of the so-called Markov properties.
To make things easier, we assume that each state depends only on some of the previous
steps, not all previous states. In a second-order HMM, each tag depends on the two
previous ones (see Figure 12). This history dependence is the Markov Chain part of
the HMMs. What makes it a hidden Markov model is the assumption that these tags are
unobservable.

You might wonder why we need to make all of these assumptions? Why don’t
we just take the best tag for each word and be done? Remember that words are
ambiguous: the most likely tag for “can” is one of NOUN, VERB, or AUX. But what
is the most likely tag in “the can”? Probably no longer VERB or AUX... The context
disambiguates it. That’s why we want the Markov Chain of hidden tags.

Hidden Markov
Model HMM

generative story

Markov properties

Markov Chain

greedy inference

Viterbi decoding

142

SECOND ORPER M ARKOV CHAIN
START START NOUN VERB NOUN

FIGURE 12. A second-order Hidden Markov Model

The tags are hidden, but they are connected to something we can observe, namely the
words. And that connection follows certain regularities we can capture with features:
words ending in “—ing” are more likely to be nouns or verbs, words starting with
an uppercase letter are probably proper names, etc. (Note that we also assume that
previous words do not influence the current word. This is another Markov property, the
independence of the observations from one another).

Assuming an underlying structure like an HMM lets us reverse-engineer that
generative story, which in turn gives us the most likely sequence of tags. That is what
the inference in the Structured Perceptron uncovers. We reward good features that
result in the right tags by increasing their weight, and we decrease the weight of bad
features.

12.1.1. Inference. We can choose between two inference algorithms to get the pre-
diction we need to update our weights. The first algorithm is greedy inference. It is
fast, but gives only approximate solutions. In practice, those solutions are pretty good,
though. Greedy inference chooses the highest scoring tag as prediction at each step,
then moves on. It can therefore be tripped up in longer dependencies.

The second inference algorithm, Viterbi decoding, does take context explicitly into
account. It chooses each tag based on its score and the score of its best predecessor
(which in turn is computed by the same approach). Viterbi decoding is exact, and can

w N =

IS

6

12. STRUCTURED PREDICTION 143

work better than greedy inference if we have little data. However, it is more involved,
and therefore slower.

For either inference, we make use of unambiguous words to speed up the process
and to avoid errors that could affect accuracy further on.

Greedy Inference. In greedy inference, we look at each word in turn. We derive
its features from the tag history, context, and word itself, and use them to compute the
scores for each possible tag. We pick the highest-scoring tag for this word as output,
and then we move on. The tag we just predicted now becomes part of the tag history for
the next word, and on we go. Because it is a series of simple decisions, we can move
through it quickly. All we have to do is iterate over the words. The pseudocode is short
and simple:

for each words, tags:

predictions = []
for each word in words:

scores = get_features (word, tags[-2], tags[-1], words) =
weights

tag = argmax (scores)
predictions.append (taqg)

CODE 65. Pseudo code for greedy inference decoding.

If we made a wrong decision early in the sentence, it sticks with us. In fact, it be-
comes the basis of future predictions, which could be affected by this decision. For
example, in the sentence “Attack was their only option,” the word “attack’ could be la-
beled as VERB, which would change the scores for subsequent predictions. In practice,
though, greedy inference is fairly robust. It was used in the early taggers of spacy,
which was famous forits speed and accuracy.

Viterbi Decoding. Viterbi inference 1s slightly more involved than greedy inference.
For each word, we compute a joint score that consists of the regular feature score and
the score we computed for the best previous tag. We always carry this history around,
and only if we find the best score for the current word do we decide on the best tag for
the previous word. That lag allows us to fix mistakes. It does, however, require some
overhead in bookkeeping, and a few extra loops.

Since we essentially compute a path through the sentence, going from tag to tag,
we use a structure called a lattice or trellis: an interwoven band of paths through the
sentence. To keep track of the score and the best predecessor tag, we use two matrices
with the same dimensions. Both have one row for each tag in our tag set, and one
column for each token in our sentence.

The scoring matrix is often called (). Q[i, j] denotes the score of the best paths
leading us up to node word j with tag 7. Since we do not need to find a best predecessor
for the first word (it’s START), the first column of () is always just the scores of the
different tags given the START history. In each subsequent column, each cell is the

O U w N

144

This can can fly away
SCORE

5.10 9.12 12.76 10.01
1.34 8.32 9.03 11.47 11.43

3.66
A
/ J 9.86 15.01
O(TAG, 0) + ¢(can, START, TAG, ,0) <0
¢(This, START, START, ,0)+0

INHTALIZE FIRST EONS

FIGURE 13. Initialization of () matrix in Viterbi decoding.

sum of all best paths arriving there, i.e., each tag score multiplied by the () of the best
predecessor (see Figure 13).

The backpointer matrix (or lattice) has the same shape, but it is literally a lookup
table. The value k£ in the cell at position 7, j tells us that if we tag word j with tag ¢, the
best predecessor tag is £ (for word 7 — 1).

We first walk through the sentence, filling the () and backpointer matrices. For
each position, we need to iterate over all possible tags of the previous two positions, to
compute the combined score of the current tag and the best predecessor. This is where
the tag dictionary for words comes in handy. We only have to iterate over all tags when
we get an unknown word.

Once we have reached the end of the sentence, we find the highest scoring tag for the
last token, and add it to the output. We then look up the corresponding best predecessor
to that tag, and from there simply follow the backpointers, adding each to the output
(see Figure 14). Since we walk through the sentence backwards, we need to reverse the
result before returning it.

initialize scores
features = get_features (words[0], START, START, context, 1)
scores = get_scores (features)

for each allowed tag on word 1:
Q[tag, word] = scores[tag]

12. STRUCTURED PREDICTION 145

DET. NOUN VERB VERB ADV)

. L . . r ‘

This\ can' can fly \ away‘-\
Score \ \ \ \

| 5.10 |\ 9.12) 12.76 | 10.01
1.34 |\ 8.32 | 9.03 |11.47 |\ 11.43
3.66 | | " \
9.86 ||!15.01

BACKPONTERS 1 v ,
DEV‘[NOUN][VERB L- VEHB
START || DET | VERB \ ADV
START VERB v
VERB

FIGURE 14. Decoding via backpointers in Viterbi inference.

5
8 # £ill lattice for every position and tag with Viterbi score Q
9 for each word i:

10 for each allowed prev_tag on prev_word:

11 best_score = float ('-Inf')

12 # score of previous tag on previous word

13 prev_score = Q[prev_tag, prev_word]

14

15 for each allowed prev2_tag:

16 if 1 == 1:

17 prev2_tag = START

18

19 # get features of word i with the two previous tags

20 features = get_features (word, prev2_tag, prev_tag,
context, i)

21 scores = get_scores (features)

22

23 # update best score

24 for each allowed tag on current word:

25 tag_score = prev_score + scores|[tag]

26

277 if tag_score > best_score:

28
29
30
31
32
33
34
35
36
37
38
39
40
41

146

Qltag, word] = tag_score
best_score = tag_score
backpointers[tag, word] = prev_tag

find best tag for last word
best_tag = argmax(Q[:, -11)
prediction = [best_tag]

for i in range(N-1,0,-1):
next = backpointers[best_tag, 1i]
prediction.append (next)

best_tag = next

return reversed (prediction)

CODE 66. Pseudo code for Viterbi decoding.

As you can see, the pseudo code is more involved, and has more levels of loops.
However, the last line in the main loop, where we set the backpointers, is what makes
this inference powerful: we decide on the best tag for a word only after we have seen
the next one.

The entire code for the Structured Perceptron adds a few convenience functions
for saving and loading of trained models, some bookkeeping structures, and output.
The code here follows the paper by Collins (2002), with some updates for the
greedy inference from the Explosion blog posy by Matthew Honnibal (https://
explosion.ai/blog/part-of-speech-pos-tagger—-in-python).

1 class StructuredPerceptron (object) :

implements a structured perceptron as described in Collins 2002,
with updates from https://explosion.ai/blog/part—-of-speech-pos-—
tagger—-in-python

def _ init_ (self):

mman

initialize model parameters

self.tags = set ()

self.feature_weights = defaultdict (lambda: defaultdict (float)
) #feature_name -> tags —-> weight

self.weight_totals = defaultdict (lambda: defaultdict (float))
#feature_name -> tags —> weight

self.timestamps = defaultdict (lambda: defaultdict (float)) #
feature name -> tags -> weight

15
16
17
18
19
20
21
22
23
24
25
26

27
28
29
30
31
32
33
34

35
36
37
38
39
40

41
42

43
44
45

46
47
48
49
50
51
52
53

12. STRUCTURED PREDICTION 147

self.tag_dict = defaultdict (set) #word —-> {tags}

self.START = "__START__"
self.END = "__END__"

def normalize (self, word):

lowercase word, and replace numbers, user names, and URLs

mmwmn

return re.sub (urls, 'URL', re.sub(users, '@USER', re.sub(
numbers, '0', word.strip().lower())))

def evaluate(self, data_instances, predict_method='greedy'):
correct = 0
total = 0
for (words, tags) in data_instances:
preds = self.predict (words, method=predict_method)
matches = sum(map (lambda x: int (x[0]==x[1]), zip(preds,
tags)))
correct += matches
total += len(tags)
return correct/total

def fit (self, file_name, dev_file=None, iterations=10,
learning_rate=0.25, inference='greedy', verbose=False):

wun

read in a CoNLL-format file, extract features to train weight
vector

wun

initialize tag dictionary for each word and get tag set

instances = [(words, tags) for (words, tags) in self.
read_conll_file(file_name)]

for (words, tags) in instances:

self.tags.update (set (tags))

for word, tag in zip(words, tags):
self.tag_dict[self.normalize (word)].add(tag)

if dev_file:
dev_instances = [(words, tags) for (words, tags) in self.
read_conll_file(dev_file)]

54
55
56
57
58
59
60

61
62
63
64
65
66
67
68
69

70
71
72
73
74
75

76
77
78
79
80
81

82

83
84

85
86
87
88
89

90

148

iterate over data

for iteration in range(l, iterations+l):
correct = 0
total = 0
if verbose:

print ('Iteration {}'.format (iteration+l), file=sys.

stderr, flush=True)

print ("x" x 15, file=sys.stderr, flush=True)

random.shuffle (instances)
for i, (words, tags) in enumerate (instances) :
if i > 0:
if 1%1000==0:

print ('%$s'%i, file=sys.stderr, flush=True)

elif i%20==0:

print ('.', file=sys.stderr, flush=True, end='
")
get prediction
prediction = self.predict (words, method=inference)

derive global features

global_gold_features, global_ prediction_features =

self.get_global_ features (words, prediction, tags)

update weight vector:
1. move closer to true tag
for tag, fids in global_gold_features.items
for fid, count in fids.items () :
nr_iters_at_this_weight = iteration
timestamps[fid] [tag]
self.weight_totals[fid] [tag] +=
nr_iters_at_this_weight » self.feature_weights[fid] [tag]

() :

- self.

self.timestamps|[fid] [tag] = iteration

self.feature_weights[fid] [tag] +=
learning_rate x count

2. move further from wrong tag
for tag, fids in global_prediction_features
for fid, count in fids.items () :
nr_iters_at_this_weight = iteration
timestamps[fid] [tag]
self.weight_totals[fid] [tag] +=
nr_iters_at_this_weight » self.feature_weights[fid] [tag]

.items () :

- self.

91
92

93
94
95

96
97
98
99
100

101
102

103
104

105
106

107

108
109

110
111
112
113
114
115

116
117
118
119
120

121
122

123

12. STRUCTURED PREDICTION 149

self.timestamps|[fid] [tag] = iteration
self.feature_weights[fid] [tag] —-=
learning_rate % count

compute training accuracy for this iteration

correct += sum([int (predicted_tag == true_tag) for
predicted_tag, true_tag in zip(prediction, tags)])

total += len(tags)

output examples
if verbose and 1%1000==0:

print ("current word accuracy:{:.2f}".format (
correct/total))
print (list (zip (words,
[self.normalize (word) for word in
words],
tags,
prediction)), file=sys.stderr,
flush=True)
print ('\t{} features'.format (len(self.feature_weights)),

file=sys.stderr, flush=True)
print ('\tTraining accuracy: {:.2f}\n'.format (correct/
total), file=sys.stderr, flush=True)
if dev_file:
print ('\tDevelopment accuracy: {:.2f}\n'.format (self.
evaluate (dev_instances, method=inference)), file=sys.stderr, flush
=True)

average weights
for feature, tags in self.feature_weights.items () :
for tag in tags:
total = self.weight_totals[feature] [tag]
total += (iterations - self.timestamps|[feature] [tag])
+ self.feature_weights[feature] [tag]
averaged = round(total / float (iterations), 3)
self.feature_weights[feature] [tag] = averaged

def get_features(self, word, previous_tag2, previous_tag, words,
i)

mmn

get all features that can be derived from the word and
previous tags

mman

124
125
126
127
128
129
130
131
132
133
134
135
136
137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156
157

150

prefix = word[:3]
suffix = word[-3:]

features = {
'"PREFIX={}"'.format (prefix),
'SUFFIX={}"'.format (suffix),
'LEN<=3={}"'.format (len (word) <=3),
'FIRST_LETTER={}"'.format (word[0]),
'WORD={}"'.format (word),
'"NORM_WORD={}"'.format (words[i]),
'"PREV_WORD={}"'.format (words[i-1]),
'"PREV_WORD_PREFIX={}"'.format (words[i-1][:3]),
'"PREV_WORD_SUFFIX={}"'.format (words[i-1][-3:]),
'"PREV_WORD+WORD={}+{}"'.format (words[i-1], words[i
1)
'"NEXT_WORD={}"'.format (words[i+1]),
'NEXT_WORD_PREFIX={}"'.format (words[i+1][:3]1),
'NEXT_WORD_SUFFIX={}"'.format (words[i+1][-3:]),
'WORD+NEXT_WORD={}"'.format (word, words[i+l]),
'"NEXT_2WORDS={}+{}"'.format (words[i+1l], words[i
+21),
'PREV_TAG={}"'.format (previous_tag),
previous tag
'PREV_TAG2={}"'.format (previous_tag2),
two-previous tag
'PREV_TAG_BIGRAM={}+{}'.format (previous_tag2,
previous_tag), # tag bigram
'PREV_TAG+WORD={}+{}"'.format (previous_tag, word),
word-tag combination
'PREV_TAG+PREFIX={}_{}'.format (previous_tag,
prefix), # prefix and tag
'"PREV_TAG+SUFFIX={}_{}"'.format (previous_tag,
suffix), # suffix and tag
'"WORD+TAG_BIGRAM={}+{}+{}'.format (word,
previous_tag2, previous_tag),
'SUFFIX+2TAGS={}+{}+{}'.format (suffix,
previous_tag2, previous_tag),
'PREFIX+2TAGS={}+{}+{}'.format (prefix,
previous_tag2, previous_tag),
'BIAS'

}

return features

def get_global_ features(self, words, predicted_tags, true_tags):

158
159
160
161

162
163
164
165
166
167
168
169

170

171

172
173
174

175

176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196

12. STRUCTURED PREDICTION 151

sum up local features

e

context = [self.START] + [self.normalize (word) for word in
words] + [self.END, self.END]

global_gold_ features = defaultdict (lambda: Counter())
global_prediction_features = defaultdict (lambda: Counter())

prev_predicted_tag = self.START
prev_predicted_tag2 = self.START

for j, (word, predicted_tag, true_tag) in enumerate (zip (words
, predicted_tags, true_tags)):
get the predicted features. NB: use j+1, since context
is longer than words
prediction_features = self.get_features (word,
prev_predicted_tag2, prev_predicted_tag, context, j+1)

update feature correlation with true and predicted tag

global_prediction_features[predicted_tag].update (
prediction_features)

global_gold_features|[true_tag] .update (prediction_features

prev_predicted_tag2 = prev_predicted_tag
prev_predicted_tag = predicted_tag

return global_gold_features, global_prediction_features

def get_scores(self, features):

predict scores for each tag given features

scores = defaultdict (float)

add up the scores for each tag
for feature in features:
if feature not in self.feature_weights:
continue
weights = self.feature_weights[feature]
for tag, weight in weights.items() :
scores|[tag] += weight

197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220

221
222
223
224
225
226

2277
228

229
230
231

232
233
234
235
236

152

return tag scores

if not scores:
if there are no scores (e.g., first iteration),
simply return the first tag with score 1
scores[list (self.tags) [0]] =1

return scores

def predict (self, words, method='greedy') :

Tra

predict tags using one of two methods
Tra
if method == 'greedy':

return self.predict_greedy (words)
elif method == 'viterbi':

return self.predict_viterbi (words)

def predict_viterbi(self, words):

L |

predict using Viterbi decoding

Tra

context = [self.START] + ([self.normalize (word) for word in
words] + [self.END, self.END]

N = len (words)
M
tags = sorted(self.tags)

len(self.tags) #number of tags

create trellis of size M (number of tags) x N (sentence
length)

Q = np.ones((M, N)) % float ('-Inf')

backpointers = np.ones((M, N), dtype=np.intl6) x -1 #
backpointers

initialize probs for tags j at position 1 (first word)

features = self.get_features (words[0], self.START, self.START
, context, 1)

scores = self.get_scores (features)

allowed_initial_tags = self.tag_dict[context[1l]]

for j in range (M) :
if not allowed_initial_tags or tags[]j] in
allowed_initial_tags:

237
238
239

240
241
242
243
244
245
246
247
248
249
250

251
252
253
254
255
256
257
258
259
260
261
262

263

264
265
266

267

268
269
270
271
272
273

274

12. STRUCTURED PREDICTION 153
Q[j,0] = scores(tags[]]]

filling the lattice, for every position and every tag find
viterbi score Q
for i in range(l, N):
allowed_tags = self.tag_dict[context[i+1]]

for every previous tag

for j in range (M) :
best_score = 0.0#£float ('-Inf')
prev_tag = tags|[j]

skip impossible tags
allowed_previous_tags = self.tag_dict[context[i]]
if allowed_previous_tags and prev_tag not in
allowed_previous_tags:
continue

best_before = Q[j,1-1] # score of previous tag

for every possible pre-previous tag
for k in range (M) :

if i ==
self.START

prev2_tag
else:

prev2_tag tags[k]

skip impossible tags

allowed_previous2_tags = self.tag_dict|
context [1-11]]

if allowed_previous2_tags and prev2_tag not
in allowed_previous2_tags:

continue

get features of word i with the two previous
tags

features = self.get_features (words[i], prev2_tag,
prev_tag, context, i+1)

scores = self.get_scores (features)

update best score
for t in range (M) :
tag = tags[t]
if word is unknown, use all tags, otherwise
allowed ones
if not allowed_tags or tag in allowed_tags:

275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301

302
303
304
305
306
307
308
309
310

311

312

313

314

315

154

tag_score = best_before + scores|[tag]

if tag_score > best_score:

Qlt,1i] = tag_score
best_score = tag_score
backpointers[t,i] = J

final best
best_id = Q[:,-1].argmax ()

print best tags in reverse order
predtags = [tags[best_id]]

for i in range(N-1,0,-1):
idx = backpointers[best_id, 1]
predtags.append (tags[idx])
best_id = idx

#return reversed predtags
return predtags[::-1]

def predict_greedy(self, words):

L |

greedy prediction
context = [self.START] + [self.normalize (word) for word in
words] + [self.END, self.END]

prev_predicted_tag = self.START
prev_predicted_tag2 = self.START

out = []

for j, word in enumerate (words) :
for unambiguous words, just look up the tag
predicted_tag = list (self.tag_dict[context[j+1]])[0] if
len(self.tag_dict[context[Jj+1]]) == 1 else None

if not predicted_tag:
get the predicted features. NB: use j+l1l, since
context is longer than words
prediction_features = self.get_features (word,
prev_predicted_tag2, prev_predicted_tag, context, j+1)
scores = self.get_scores (prediction_features)

12. STRUCTURED PREDICTION 155

316

317 # predict the current tag

318 predicted_tag = max(scores, key=scores.get)
319

320 prev_predicted_tag2 = prev_predicted_tag
321 prev_predicted_tag = predicted_tag

322

323 out .append (predicted_tag)

324

325 return out

326

327

328 def read_conll_file(self, file_name) :

329 mwn

330 read in a file with CoNLL format:

331 wordl tagl

332 word2 tag2

333 e e

334 wordN tagN

335

336 Sentences MUST be separated by newlines!

337 o

338 current_words = []

339 current_tags = []

340

341 with open(file_name, encoding='utf-8') as conll:
342 for line in conll:

343 line = line.strip()

344

345 if line:

346 word, tag = line.split('\t')

347 current_words.append (word)

348 current_tags.append(tag)

349

350 else:

351 yield (current_words, current_tags)
352 current_words = []

353 current_tags = []

354

355 # if file does not end in newline (it should...),
356 # check whether there is an instance in the buffer
357 if current_tags != []:

358 yield (current_words, current_tags)

359

360

361
362
363
364
365
366
367
368
369

370
371
372
373
374
375
376

377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396

397
398

399
400
401

156

def save(self, file_name):

save model as pickle file

wun

print ("saving model...", end=' ', file=sys.stderr)

with open(file_name, "wb") as model:
pickle cannot save default_dictionaries
=> make copy and turn into regular dictionaries
save_feature_weights = defaultdict (lambda: defaultdict (

float))

save_feature_weights.update (self.feature_weights)
save_tag_dict = defaultdict (set)
save_tag_dict.update(self.tag_dict)

save_feature_weights.default_factory = None
save_tag_dict.default_factory = None
pickle.dump ((save_feature_weights, save_tag_dict, self.

tags),

model, -1)
print ("done", file=sys.stderr)

def load(self, file_name):

nmmwn

load model from pickle file
print ("loading model...", end=' ', file=sys.stderr)
with open(file_name, 'rb') as model:
try:
parameters = pickle.load (model)
except IOError:
msg = ("No such model file.")
raise MissingCorpusError (msg)

feature_weights, tag_dict, tags = parameters
self.tags = tags

pickle cannot store defaultdicts, so we need a 2-step

process

1. initialize
self.feature_weights = defaultdict (lambda: defaultdict (

float))

self.tag_dict = defaultdict (set)

2. update

402
403
404
405

12. STRUCTURED PREDICTION 157

self.feature_weights.update (feature_weights)
self.tag_dict.update (tag_dict)

print ("done", file=sys.stderr)

return None

CODE 67. Code for a Structured Perceptron class.

Two functions to point out are get__features () and get_scores (). The first
derives all features from a word, its tag history, and the general context. This includes
all possible combinations and analysis, and can be extended. Nothing in this code is
specific to POS tagging, though it might be necessary to add other features for other
tasks. To allow both greedy and Viterbi inference, we use a helper function that sums
up all word features to a global feature vector for the sentence.

The scoring function takes the features as input. For each feature, it iterates over all
tags, and looks up the weights associated with this feature for the current tag. Summing
up the scores for all features for each tag give us the ranking of tags.

The feature weights are averaged, i.e., weighted by their respective frequency.
This requires some additional bookkeeping, but substantially helps performance.

Note that the weights are updated after each sentence, weighted by the learning
rate. Because we update so frequently, the weights can be pushed in a certain direction
if we see the same features several times in a row. To break this symmetry, we shuffle
the order of instances after each iteration.

You might wonder why to bother with this model, given that there are very pow-
erful neural networks for sequence (which we will cover in the next chapters). The
Structured Perceptron might not be as powerful as, say an LSTM, but it has two
things going for it. It needs much less data to achieve decent performance, and it
is interpretable. We can look at the feature weights and find exactly what features
influence the decision.

neural networks

feature engineering

158

13. Neural Networks Background

Imagine you are trying to predict a complex phenomenon, like human behavior.
Simple, linear models can help explain what is happening by creating a simpler version
of the problem. However, they will not be able to do the complex relationship between
inputs and outputs justice. To better approximate the complexity of the problem, we
need a more complex model. Non-linear models can match the complexity of the prob-
lem, and are thus much more adept at analyzing them. However, we buy this complexity
with a decrease in explainability.

So far, we have relied on simple, linear, feature-based models for prediction. These
models perform reasonably well, and they have the added benefit that they can be
interpreted. However, linear models can fail if the underlying distribution is inherently
non-linear—and in many language-related studies, exactly this is the case. It is therefore
not too surprising that neural models have recently revolutionized language-related
tasks, and went from academic designs to production-strength systems. It started
with speech processing, reaching almost human voice recognition and speech-to-text
capabilities, and continued with a quantum leap in the quality of machine translations.
The effect of networks on NLP has variously been compared to a car on a “rabbit in
the headlights”,” or as a “tsunami” (Manning, 2015). Despite this violent imagery, the
net effect on the field has been positive, as it provided new avenues in prediction and
generation (e.g., in chatbots, for picture descriptions, etc.).

In this chapter, we will look at the currently dominant class of non-linear mod-
els, neural networks. They have opened up new ways to do research. They have
excellent predictive performance, and they can learn representations, which has freed
us from cumbersome feature engineering. Instead, they use word embeddings, which
allowed us to spend more time experimenting with model architectures that best capture
the underlying problem.

Neural networks are a very active, fast-developing research area. There are new,
fundamental developments almost at a monthly level. In 2018, a debate about whether
one model type or another was better for text classification went on via conference
papers over several months. Recommendations and best practices changed at the same
speed. There are plenty more open issues out there, and they grow even more numerous
by the day. In order to truly get into the topic, we would therefore need much more
space than we have here, as the mathematical underpinnings alone require a substantial
treatment of various linear algebra concepts. And even then, it would be largely outdated
by the time this appeared. Instead, we will here mainly look at the intuition behind
neural networks, and look at a few select model architectures to give you an idea of the
range.

7https://inverseprobability.com/2Ol6/05/15/nlp—is—a—rabbit—in—the—
headlights

13. NEURAL NETWORKS BACKGROUND 159

For a more in-depth, excellent introduction to the use of neural networks
in NLP, see Goldberg (2017), or the shorter primer on which it is based
(Goldberg, 2016). For an intuitive explanation and great visualization, see
the excellent videos by 3BluelBrown https://www.youtube.com/watch?v=
aircAruvnKk&1list=PLZHQObLOWTQDNU6R1_67000Dx_ZCJB-3pi. For more
implementation details in keras, see Chollet (2017).

13.1. Neural History. While neural networks have dominated machine learning
news over the last few years, in reality, they are an old technology. The first version,
called the Perceptron, which was inspired by actual neurons, was introduced in the
1950s by Rosenblatt (1958). For an overview of applications in political science, see
Chatsiou and Mikhaylov (2020).

After the great initial excitement, there were some setbacks. It became apparent
that the Perceptron itself was limited (Minsky and Papert, 1969, proved that perceptrons
could not learn the exclusive OR logic function, see below). However, it eventually
became clear that this model was a great building block for more complex systems.
We can build layers by running several simple perceptrons over the same input and
using their output as input for another perceptron. The resulting model is a multilayer
perceptron or feed-forward neural network (these terms are used interchangeably,
but they mean the same thing). The more layers (i.e., the deeper the stack of layers,
hence deep learning), the more expressive the model becomes, and the more complex
phenomena it can tackle.

Many fields have now seen revolutionary breakthroughs using these neural net-
works. In NLP, the progress has been led by using word embeddings, and then ex-
panded to the very flexible model architectures. We have seen a lot of innovation, and
many tasks have significantly improved. The most publicly visible example of this shift
is probably the translation quality of services like Google Translate (Wu et al., 2016).

The one drawback neural networks have for social scientists is their lack of inter-
pretability. As great as they are for correctly predicting an outcome, it is tough to
explain why they do so. This problem has the same origin as the networks’ strength:
their distributed nature. Each level in the architecture specializes during training, and
by taking different paths from input to output, we can model theoretically any relation-
ship between them. Computer vision research (an early adopter of neural networks) has
shown that different layers in the network correspond to different visual correlates. E.g.,
the first layers recognize lines, then simple shapes, then parts of faces, and ultimately
things like generic faces for facial recognition. Unfortunately, for language, matters
are less straightforward. The initial hope with networks was that they would mirror the
brain, and that the layer would correspond to different levels of linguistic analysis, i.e.,
phonology, morphology, syntax, and semantics (Dell, 1986). So far, this has not panned
out. Using an architectural feature called attention (Bahdanau et al., 2014), we can now
at least show the influence individual words or passages have. (It also turns out to be
very useful for performance). However, the use of neural networks for explanation is

Perceptron

layers

multilayer percep-
tron

feed-forward neural
network

attention

perceptron

convolutional neural
network

recurrent neural net-
work

160

still minimal. However, neural networks are still a very fast developing research area,
and new algorithms come out constantly.

To better understand the power and potential of networks, we will first review the
basics, and then introduce elements of networks that have proven useful.

13.2. Network Basics. Generally, neural networks for prediction can be distin-
guished into four classes, based on the type of input and output (see also Figure 15):

(1) fixed-length input, fixed-length output: e.g., classify a word embedding as di-
alect or standard. This uses a feed-forward neural architectures like the per-
ceptron (see 13.3).

(2) variable-length input, fixed-length output: e.g., classify a text (i.e., a sequence
of word embeddings) as positive, negative, or neutral. This is the use case for
convolutional neural networks (see 14.1).

(3) variable-length input, variable-length output: e.g., labeling each word with its
part of speech, or translating a German text into a French text. This uses re-
current neural networks (see 14.2).

| o
l\=/l
0

Logistic Regression, Perceptron,
Feed-Forward Network, Deep Belief

Network... Multitask Learning, Decoder

-
ey i i

Recurrent Neural Networks (RNN), Hidden
Markov Models (HMM), Conditional Random
Convolutional Neural Networks (CNN) Fields

FIGURE 15. The different types of neural architectures.

13. NEURAL NETWORKS BACKGROUND 161

(4) fixed-length input, variable-length output: e.g., text generation based on a
prompt (this uses a decoder architecture), or the classification of multiple prop-
erties of a document embedding (this uses a multitask learning architecture).

13.2.1. Training. The basic idea behind training a network is that of show and tell.
The network is initialized randomly and then presented with input-output pairs. We take
the input, run it through the network, and see whether it produces the desired output.
The most useful explanation of this process comes from a New York Times article on
Al (Lewis-Kraus, 2016):

"Imagine that you're playing with a child. You tell the child, ‘Pick up
the green ball and put it into Box A.” The child picks up a green ball
and puts it into Box B. You say, ‘Try again to put the green ball in Box
A. The child tries Box A. Bravo."

This example describes a model that only has an input and an output layer. However,
as we add more layers to get more power, things get a lot more complicated, especially
when the prediction does not match the output. From the same article (emphasis my
own):

"Now imagine you tell the child, ‘Pick up a green ball, go through the
door marked 3 and put the green ball into Box A.” The child takes a
red ball, goes through the door marked 2 and puts the red ball into
Box B. How do you begin to correct the child? You cannot just repeat
your initial instructions, because the child does not know at which
point he went wrong."

If the prediction does not match the output, we use an error function to compute
how different the prediction was from the intended output. We then walk back from
the output through each layer of the network, adjusting the parameters at each step in
such a way that they produce the correct output the next time around. This step is
called backpropagation, and it is what sets the parameters of the model. Obviously,
the updates we need to make at each layer depend on the updates we needed to make at
each previous layer.

Normally, we stop the backpropagation at the last layer before we reach the input.
If instead, we include the input in the updating process, we are essentially also learning
the best way to represent the problem for the task, i.e., through embeddings. This part
is therefore called representation learning (if we started with random embeddings) or
finetuning (if we use existing embeddings).

During backpropagation, we have to compute at each layer (e.g., ball color, door,
box) what went wrong. Then we can tell the previous layer what parameters it has
to correct in order to give the current layer the right input. What are those model
parameters we optimize in backpropagation? As we will see they are simply vectors
and matrices of weights.

multitask learning

error function

backpropagation

representation learn-
ing
finetuning

162

13.3. The Perceptron. The grandfather and basic building block of any neural net-
work is the perceptron (Rosenblatt, 1958). The Perceptron was inspired by the observa-
tion that actual neurons fire when they receive a signal that exceeds a certain threshold.
We can also imagine this (maybe less grandiose, but more apt) like a smoke detector. It
has an array of sensors (say, one on each side, or maybe at different heights), it sums
up the readings from all of them. If the total amount of smoke measured exceeds a cer-
tain limit, it rings the alarm. The Perceptron works similarly: it weighs the information
from the different inputs, and if their total information crosses a threshold, it produces
an output.

1 if f(X) =0

—1 otherwise

f(X) = a(wix; + wax2+b) y=

INFUT AND OR
o "@ © 0 O
b\ o
X1
w2

FIGURE 16. Visualizations, logical tables, architecture, and equations
for AND and OR perceptrons.

Rosenblatt (1958) showed that a perceptron with two binary inputs and one binary
output could learn to solve simple logic functions like AND and OR (see Figure 16 for a
visualization and the logical tables of both) with the same basic architecture. The input
value for each node is simply O or 1, and the output of the Perceptron is +1 or —1.

13. NEURAL NETWORKS BACKGROUND 163

To represent a logical AND, the perceptron checks whether the sum of the weighted
inputs to 2. If they do, that means both input nodes were on (or true), and therefore the
output is true, and the Perceptron outputs +1.

To represent a logical OR, it is enough to check whether the sum of the inputs is
equal to 1 (i.e., if at least one of the inputs was true). If they do, then the output is true.
You can see the architecture and equations for both perceptrons in Figure 16. However,
so far, we have to explicitly specify the threshold, depending on whether we wanted to
recognize AND or OR functions. It turns out that we can let the Perceptron learn that
threshold, so that we can use the same Perceptron for both AND and OR functions. To
do that, we first add another input node that is always on (which is called the bias term).
The bias node has its own bias weight, which corresponds to the threshold needed for
the respective functions.

The summed value from all the inputs is now a linear combination of the two input
values, each multiplied with their respective weight, plus the bias term (which is the
input value 1 multiplied by its bias weight). We can write that as a function over the
inputs X, which is a vector with the input values, x, and x5:

f(X) = w1T1 + Wk + b

However, we still need to test whether f(X') exceeds a certain threshold. Since we
could have weights of any size, f(X) could have almost any value. To get it back into a
defined range, we use a special function that limits the possible range to a minimum and
maximum. No matter how large or small f(X) is, it can never-exceed that range. Le.,
we squeeze the result of f(X') to be within a desired range. This squeezing results in an
S-like curve if we plot all values of f(.X) and their squeezed value. There are different
functions available that achieve this S shape, and they are jointly referred to as sigmoid
functions. Some of them are shown in Figure 17.

Depending on which sigmoid function we choose, the range can be from —1 to 1,
or from 0 to 1. Once we have such a defined range, our threshold simply becomes
the midpoint between the minimum and maximum value. For example, if we use the
hyperbolic tangent (tanh) function, which squeezes everything into a range from —1 to
1, our threshold becomes (. The original Perceptron used a logistic function as sigmoid,
which ranges from 0 to 1.

Once we have that threshold value, anything above it is the positive output class,
everything below the negative output class. Our prediction y is +1 if we are above the
threshold, and —1 if we are below it. Applying the sigmoid transformation of f(x) and
testing whether it exceeds the threshold for the perceptron to fire is called an activation
function.

This architecture was now able to learn both logical AND and OR functions, simply
by learning the appropriate threshold for each from the data. People were excited!

It got even more exciting when it turned out that the Perceptron can do more than
just learn AND and OR functions. Its weights essentially define a decision boundary
between positive and negative examples. In essence, we can use the Perceptron to

bias term

sigmoid functions

activation function

linearly
separable

non-

N =

0 ~J o U1 b W

164

J(X) =awix; +wax2+ Db
Siemoip
(S-LIKE)
Logistic
tanh
RelLU

FIGURE 17. Activation functions and their output

predict the labels of new data!

The problem was that this simple architecture broke down when faced with the
exclusive or (XOR) problem: the output is only true if one input is true and the other
one false. If both are true or both are false, then the output is false. No matter how
you choose the threshold, you can never produce the right output for all inputs. This is
an example of linearly non-separable problem. We cannot draw a decision boundary
between the examples of different classes. This result from (Minsky and Papert, 1969)
dealt the Perceptron and the development of Al a major blow. Excitement abated, and
the development of Al stalled for a while.

Marsland (2011) has a friendly introduction to the Perceptron and neural networks in
Python.

import numpy as np

def sigmoid(x) :

v

ranges from O to 1

v

return 1 / (1 + np.exp(-x))

13. NEURAL NETWORKS BACKGROUND 165

OR

X
1 1 o
X
0 1 °
<
0

- O =< O

FIGURE 18. Visualization and logical table for the XOR function.

9 class Perceptron:

10 def _ _init__ (self, num_inputs):

11 # initialize the weights randomly, and set the bias to 1
12 self.wl = np.random.random (num_inputs)

13 self.bl =1

14

15 def predict (self, X):

16 # compute activation for input layer

17 fX = np.dot (X, self.wl) + self.bl

18 # non-linear transform

19 activation = sigmoid (£X)

20 # check threshold: for sigmoid, use 0.5, for tanh, use 0
21 y = np.where(fX >= 0.5, 1, -1)

22 return y

23

24 def fit(self, train_data, train_labels, num_epochs=20) :

25 models = []

26 print (num_epochs)

27 for epoch in range(l, num_epochs+1l):

28 print (epoch)

29 for (X, y) in zip(train_data, train_labels):

30 pred_label = self.predict (X)

31
32
33
34
35
36
37
38
39

0 ~J o U > W N =

e e e
IOV S A & I Vo)

O ~J o U > W N =

10
11

166

if pred_label != y:
print ('update')
self.wl = self.wl + (X x vy)
self.bl = self.bl + y

models.append((self.wl, self.bl))

return models

CODE 68. A simple Perceptron implementation.

We can use this Perceptron to fit the basic logic functions it was originally developed
to match:

and_data = np.array([([(1, 11, [(1, 01, [0, 11, [0, OI11)
and_labels = np.array([1l, -1, -1, -11)
or_data = np.array(([1, 1], [1, O], [0, 1], [O, OI1])
or_labels = np.array([1l, 1, 1, -11)
xor_data = np.array([([(1l, 1], [1, O], [0, 1], [0, O11])
xor_labels = np.array([-1, 1, 1, -11)
initialize perceptron
perceptron = Perceptron(2)
iters = perceptron.fit (and_data, and_labels, num_epochs=10)
and_predictions = perceptron.predict (and_data)
CODE 69. Fitting a Perceptron on simple logic functions.
Obviously, this version is somewhat overly simple. In order to have a more powerful
and flexible version, we can use the keras library in Python
from keras.models import Model
from keras.layers import Input, Dense
input: a sequence of 2 integers
main_input = Input (shape=(2,), name='main_input')
add the output layer
output = Dense (2, activation='hard_sigmoid', name='output',
kernel_initializer="'glorot_uniform') (main_input)
£(X) = sigmoid(X*W + b)

13. NEURAL NETWORKS BACKGROUND 167

12 # the model is specified by connecting input and output

13 perceptron_keras = Model (inputs=[main_input], outputs=[output])
14

15 # compile the model

16 perceptron_keras.compile(loss="binary_ crossentropy',

17 optimizer="'sgd',
18 metrics=["'accuracy'])
19

20 # train the model on a validation set and dave the loss and accuracy
for every epoch
21 history = perceptron_keras.fit (X, vy,

22 epochs=15,

23 verbose=1,

24 validation_split=0.2
25)

CODE 70. Perceptron implementation in the keras functional API.

(X)) = ax(Vai (WX + Bi) +B>)
FIEST SECOND BIAS

GIAS

0[/TP(/T

HIDDEN
LAYER

INPUT
L AYER

FIGURE 19. Architecture and equation for the multilayer perceptron

13.4. The Multilayer-Perceptron. We can graph the two inputs and the resulting
output for the AND and OR problems, as in Figure 16. We can see that the two output
classes can be separated by drawing a straight line (called the decision boundary). decision boundary
However, for the XOR problem, we can not draw any linear decision boundary that

latent layer

universal function

approximators

168

separates the two output classes (see Figure 18). The operative word for the decision
boundary in the XOR problem turns out to be linear. To overcome the XOR problem,
the model needed to use a more flexible decision boundary. We can not use a straight
line to separate the classes, but we can very well separate the classes if we use a curve.
The problem was how to do this programmatically.

A curve, it turns out, is nothing more than a more complex function. So the so-
lution to the XOR problem was simple. We use several perceptrons, all on the same
input, and then add another perceptron on top, which uses the outputs of the first set of
perceptrons as input. Because this input to the final Perceptron is not "visible" (i.e., it
is not part of the problem we are given, but generated by us), it is called a latent layer.

The resulting architecture is a lot more complex. It needs a lot more weights, includ-
ing several bias weights (see Figure 19), but it is capable of solving the XOR problem.
In fact, we can theoretically approximate any underlying distribution, no matter how
complicated it is, by using several non-linear functions in a row. Because of this prop-
erty, neural networks are universal function approximators, and they have done ex-
tremely well in cases where the input and output are indeed connected via a complicated
function.

This architecture has other advantages: If we want more than two output classes,
we can simply add more (binary) output nodes. The predicted output is then a vector of
output scores, and the prediction is simply the ID of the node with the highest activation
score.

As you can see from the diagram in Figure 19, these models quickly become a con-
fusing mess of nodes, weights, and their indices. To implement and compute all this
efficiently, it is easier to use vectors and matrices. Figure 20 shows how the explicit no-
tation with indices looks as matrices and in matrix notation. We have already discussed
how to represent our input and output as these structures. By representing biases and
weights as matrices as well, we can use operations like dot products to quickly calculate
the activation, error, or prediction.

input: a sequence of 2 integers

mlp_input = Input (shape=(2,), name='main_input')
add a hidden layer
mlp_hidden = Dense (16, activation='relu', name='hidden',

kernel_initializer='glorot_uniform') (mlp_input)

add the output layer
mlp_output = Dense (2, activation='softmax', name='output',
kernel_initializer="'glorot_uniform') (mlp_hidden)

the model is specified by connecting input and output
mlp = Model (inputs=[mlp_input], outputs=[mlp_output])

13
14
15
16
17
18
19
20
21

13. NEURAL NETWORKS BACKGROUND 169

EXPLICIT NOTATION
Yy =a(wnixi + W2 X2 + bl
yi Wi 1 W21 X1 bi
V2 W21 W22 X2 bs
V3 W31 W32 bs

Yy =a(Wi X thi
M ATEIX NOTATION

FIGURE 20. Visualization of matrix notation for multi-class perceptron

mlp.compile (loss="'binary_ crossentropy',
optimizer="'sgd',
metrics=["'accuracy']

mlp_history = mlp.fit (X, vy,
epochs=50,
verbose=1,
validation_split=0.2)

CODE 71. Multilayer Perceptron in keras.

13.5. Computation. In order to visualize (and compute) the prediction and updates
of the training, it can be helpful to use a computational graph. Figure 21 shows the
steps involved in computing the error for a prediction on the sentence “You are back”™.
Each circle depicts an operation (the non-mathematical ones are explained). Above each
circle and to the right is the resulting vector we operate on at that step. We start out with
looking up the embeddings corresponding to the words, concatenate them, and then
proceed to multiply them with the respective layer weights, add the biases, and apply a
reL.U and a softmax function. After that, we compute the error by comparing to the true
answer. Once we have computed the error, we can propagate it back through the graph.

computational graph

cross-entropy

one-hot

170

You
CONCATENATE FELLV SELECT

are

Lok FORNARD: COMPUTE EREOR

E BACKWARD: COMPUTE GRAPIENT

FIGURE 21. Computational graph.

Here, we can only provide a general introduction to the mechanics. For a much more
detailed explanation, see Goldberg (2017).

13.6. Error Computation. In the perceptron, we updated the weights simply if the
prediction did not match the true label. However, that approach works best for binary
classification. In modern neural networks, we use more general ways to compute the
error.

In order to do differential backpropagation, we need to first quantify how far we are
off in our prediction. One of the most common ways to do so is cross-entropy.

We compare the predicted probability distribution over the output labels (from a
softmax) with the true answer. The true answer is encoded as a one-hot distribution,
which is a probability distribution where all the mass is on one outcome, and all others
are set to 0.0.

K
— > log(fk) * yk
k=1

13. NEURAL NETWORKS BACKGROUND 171

To compute the error, we take each output label %, multiply the logarithm of the pre-
dicted likelihood ¢ with the likelihood of the true answer ;. (i.e., either O or 1), sum all
those numbers up, and take its negative.

13.7. Dropout.
“Dropout, simply described, is the concept that if you can learn

how to do a task repeatedly whilst drunk, you should be able to do the

task even better when sober.” — Stephen Merity
We have previously seen how regularization can improve the performance and general-
izability of our classifiers. The idea is to make the training more difficult to fit, thereby
forcing the model to find a more general explanation. Previously, we have done that by
adding an error term that captures the sparsity and norm of the weights. We can still
apply this form of regularization in neural networks, but there is another way that has
proven effective.

In dropout Hinton et al. (2012), we simply remove a percentage of the nodes at
random at each iteration. This forces the model to base its predictions on multiple paths
in the network, rather than on one dominant node.

The idea for regularization methods like dropout is motivated by overfitting exam-
ples like that of ALVINN Pomerleau (1989). ALVINN was a shallow network devel-
oped to steer an autonomous vehicle. It used input from cameras to learn to predict the
right (re)action from the driver. After driving the car down a road, the researchers turned
it around to drive back — and the car promptly went off the road. It turned out that there
was a ditch on one side of the road, which showed up as darker pixels. ALVINN had
learned to associate having those darker pixels on one side with keeping direction, so
when it was turned around, the ditch was on the other side Pomerleau (2012). ALVINN
had overfit to the ditch.

Methods like dropout essentially ask networks to do the job even if we take the
helpful ditch away. It forces the network to pay attention to other factors (say, the side
of the road).

In keras, we can add dropout as activation to any layer, specifying the proportion
of nodes to affect.

dropout = Dropout (0.3, name='dropout') (layer)

CODE 72. Adding dropout to a layer in keras.

We will later see an example of dropout in use (see Code 77).

13.8. Data Preprocessing. In the following, we will use the keras library to im-
plement networks. It provides two ways of specifying models: in a sequential manner
or in a functional manner. In the sequential API, the sequence in which we specify the
layers in the code corresponds to the structure of the network. In the functional API,
each layer is a function that operates on the input we give it. The latter is a lot more

dropout

O ~J o U > w N

BB W W WWWWWWWWNNNNNDNONDNNDNDNNE R 2 PRl e e
R O W W JdJo U WN EFE O WO~ U WNREPFOWOW-JOoO O S WN R~ O W

172

flexible, as we can add back input from a few layers further down. The examples in this

book will all follow the functional API.

Keras requires some preprocessing of the data, to get it into the right format the

library expects.

collect known word tokens and tags
wordset, labelset = set (), set ()
collect all unique labels
labelset.update (set (train_labels))
collect all word types in the training data
for words in train_instances:
wordset .update (set (words))
map words and tags into integer IDs
PAD = '-PAD-'
UNK = '-UNK-'
word2int = {word: i + 2 for i, word in enumerate (sorted (wordset)) }
word2int [PAD] = 0 # special token for padding
word2int [UNK] = 1 # special token for unknown words
label2int = {label: i for i, label in enumerate (sorted (labelset)) }
structure to translate IDs back to labels
int2label = {i:label for label, i in label2int.items () }
helper function
def convert2ints(instances) :
result = []
for words in instances:
replace words with ID, use 1 for unknown words
word_ints = [word2int.get (word, 1) for word in words]
result.append (word_ints)
return result
convert data and labels
train_instances_int = convert2ints(train_instances)
train_labels_int = [label2int[label] for label in train_labels]
test_instances_int = convert2ints (test_instances)
test_labels_int = [label2int[label] for label in test_labels]

convert labels to 1l-hot encoding

from keras.utils import to_categorical

train_labels_lhot = to_categorical (train_labels_int, len(label2int))
test_labels_lhot = to_categorical (test_labels_int, len(label2int))

o U W N

14. NEURAL ARCHITECTURES AND MODELS 173

CODE 73. Data preprocessing for use in keras.

In theory, we can process input of any length with recurrent or convolutional neural
networks. In practice, we need to specify a maximum length we expect to see. If we
have instances that are longer, they simply get chopped off after that length. Shorter
instances will get padded with a special O token, which is why we reserved a special
token.

compute 95th percentile of training sentence lengths

L = sorted (map(len, train_instances))

MAX_LENGTH = L[int (len(L) * 0.95)]

apply padding

from keras.preprocessing.sequence import pad_sequences
train_instances_int = pad_sequences (train_instances_int, padding='

post', maxlen=MAX_ LENGTH)
test_instances_int = pad_sequences (test_instances_int, padding='post'
, maxlen=MAX_LENGTH)

CODE 74. Computing a maximum length and padding instances up that
amount.

14. Neural Architectures and Models

14.1. Convolutional Neural Nets. Multilayer perceptrons or feedforward neural
networks are powerful, but they do have their limitations. The main one is that they can
only process input of a fixed length: if we set up the architecture to expect an input vec-
tor of dimension 300, then we have to stick to this. This restriction is unproblematic for
classifying words, since we can just use embeddings, but it gets tricky with documents.
Of course, we could use document embeddings, but this brings us back to the special
properties of language: compositionality and long-range dependencies. In a document
embedding or discrete representation, ‘“Not bad, actually quite good,” and “Not good,
actually quite bad” look very similar. They do mean very different things, though! We
can also not capture long-range dependencies, for example in relation extraction. In a
single vector representation, this is impossible. Instead, we need a way to take an ar-
bitrarily long sequence of word vectors (usually embeddings), and gobble them up to
produce a single output.

Not for the first time, the solution to this problem comes from computer vision.
To transform an image into a manageable vector, we can move a small window over the
image pixel by pixel, from top left to bottom right, and take a snap shot of each position.
The result is a smaller set of snap shots. We can then repeat this process until we have
the dimensionality we need.

channels

regions

filter

stride

feature maps

174

The image is a matrix, where each cell represents a pixel. This matrix is repeated
several times, to represent the various channels (RGB and alpha), to get a 3-dimensional
tensor. In NLP, we only have a matrix: each row is a word embedding (we could have
different channels representing different versions of the sentence, for example transla-
tions, but here, we assume a single channel).

Each of the windows, or regions, is a word n-gram, i.e., a smaller matrix. We can
have several regions of different sizes (say, bigrams and trigrams), or several copies of
the same region size (say, two trigram regions). Each of these smaller matrices is a
filter. Let’s say we have a trigram filter and slide it over the sentence: do we go word
by word to get overlapping snapshots, or do we move the filter by three words at each
step to get adjacent snapshots? This decision is captured in the stride length.

COMDLUVTION WINPON = 4

| v = Waem+h:
will
not pos
buy neut
this 3 ne
record m = max(h;) 9
it
NN (A
scratched | | [|

ci = concat(xi-i+3) hi = relu(Wiec;i+b;)

FIGURE 22. Text convolution with a filter size of four words and a stride of 1.

Depending on the region size and the stride length, dragging the filter over the sen-
tence produces a number of feature maps. For example, in Figure 22, we have one
filter with a region size of four and stride length one. With nine input words, we get six
feature maps. With four input words, we would have only one feature map. If we want,
we can run each of these feature maps through an activation function.

We hope that each feature map captures some of the dependencies and compositions
in the region, but it still leaves us with a variable output length. To reduce this variable

O J o Uk W N

I T e e e e
B O W Jdo U WM O W

22

23
24
25
26
27
28
29
30
31
32
33
34
35

14. NEURAL ARCHITECTURES AND MODELS 175

length into a fixed length, we use pooling. Simply put, we take the matrix of feature
maps, and select from each of its dimensions the maximum value. The result is a fixed
length vector: we have essentially squashed the feature map matrix into one row. Note
that we could use other operations than the maximum (e.g., the minimum or mean). In
practice, though, the maximum works best.

In keras, we can implement the various layers in a very straightforward manner:

from keras.models import Model

from keras.layers import Input

from keras.layers import Embedding

from keras.layers.convolutional import Conv1D

from keras.layers import GlobalMaxPoolinglD, Dropout
from keras.layers.core import Dense, Activation
import numpy as np

np.random. seed (42)

set parameters of matrices and convolution
embedding_dim = 64

nb_filter = 64

filter_length = 3

inputs = Input ((MAX_LENGTH,),
name="word_IDs"')
embeddings = Embedding (len(word2int),
embedding_dim,
input_length=MAX_ LENGTH) (inputs)
convolution = ConvlD (filters=nb_filter, # Number of filters

kernel_size=filter_length, # stride length of
each filter
padding='same', #valid: don't go off edge; same:
use padding before applying filter
activation='relu',
strides=1) (embeddings)
pooling = GlobalMaxPoolinglD () (convolution)
dropoutl = Dropout (0.2) (pooling)
dense = Dense (32, activation='relu') (dropoutl)
dropout2 = Dropout (0.2) (dense)
output = Dense (len(label2int), activation='softmax') (dropout2)
model = Model (inputs=[inputs], outputs=[output])

model.compile (optimizer="adam',
loss='binary_crossentropy',
metrics=['accuracy'])
model . summary ()

~ o O b w DN

O 00

11
12
13
14
15
16

176

CODE 75. keras implementation if a CNN.
We can now compile and run the model on the preprocessed data:

batch size can have a huge effect on performance!
batch_size = 64
epochs = 5

history = model.fit (train_instances_int, train_labels_lhot,
batch_size=batch_size,
epochs=epochs,
verbose=1,
validation_data=(dev_instances_int,
dev_labels_1lhot)
)

loss, accuracy = model.evaluate (test_instances_int, test_labels_lhot,
batch_size=batch_size,
verbose=False)

print ("\nTesting Accuracy: {:.4f}".format (accuracy))

CODE 76. Compiling and fitting a CNN model in keras.

14.2. Recurrent Neural Nets. Recurrent neural networks are designed to deal with
structured prediction (see above). They assume we have a sequence of inputs, and
produce a sequence of outputs (usually, but not necessarily, the same number of inputs
and outputs).

At their most generic form (see Figure 23), they have an input layer, a hidden
layer, and an output layer.. The hidden layer is a combination of the hidden state of
the previous time step and the input at the current time step. The output is simply
the result of applying an activation function to the hidden state. Concretely, we
could make a linear combination of the input and hidden state, run it through a tanh
activation function to squash the result into the range between —1 and 1, and output
that number. This approach would allow us to make a binary classification at each time
step, depending on the previous words. For example, if we wanted to decide at each
time step whether a word was English or a foreign word (i.e., code-switching).

One of the most useful applications of RNNs is in language modeling. Instead of
predicting some label, we predict at each step which word of the vocabulary should
come next (see Figure 24 for an example). This predicted word is then the input to the
next time step, and so forth. In essence, an RNN language model feeds itself the next
steps. And because we store the information of what has happened before in the hidden
state, we can essentially keep an unlimited history around (encoded somehow in the

14. NEURAL ARCHITECTURES AND MODELS 177

ovrevr LaseL B yi = f(hi)

FLLETL T

HIDDEN [AYER ihj hi = s(hi-1, xi)

INPUT VECTOR O

FIGURE 23. Generic recurrent neural network, in compact form (top)
and unrolled (bottom), based on Goldberg (2017).

vector representation of the hidden state). In contrast, probabilistic language models
need to limit themselves to a fixed context (the Markov order of the model). So they
need to trade off how far back they can look with how many parameters they need. We
could have a 15-gram probabilistic language model, but that would require us to keep a
huge amount of very sparse n-gram probabilities around, which is not very practical.

When we speak, we not only base our next word on what have just said, but
also on what we plan to say afterward (Levelt, 1993). It therefore makes sense to
model this future-dependence in recurrent models. To do that, we just have to run a
recurrent neural net on the reversed sentence: we start with the last word, and work
our way backward. Each hidden state therefore encodes all the words that come
after it. By combining the hidden states of this model with a regular RNN (usually
by simply concatenating the two vectors), we get a bi-directional RNN (see Figure 25). bi-directional RNN

Having, in essence, an unlimited memory of the previous words (or the future ones,
as we have just seen) is great in theory. In practice, though, it turns out to be not always
useful. In all the examples of long-range dependencies we have seen so far, there was
one word or phrase we needed to remember, but the intervening material was often
unrelated and self-contained. So once we have processed an inserted subordinate clause,

long

short-term

memory (LSTM)

O J o U W N

e e
S W N RO W

178

N
P(WI, w2, ooy Wn) zHP(wilwl’wi'I)
=1 N

\‘/—//smﬁy
weather J today [l s END

FLLLTLLET

wen FILETLLIELTY FLLLEITET
. . .
.

H —» H =—» H

J

LT LT

1] [LTITT] [ITT1TT] [ITITT] [ITITT] [ITITT]

FIGURE 24. Example of a recurrent neural network language model,
with theoretically infinite history:.

we need no longer burden our memory with it anymore. All it does is take up space and
potentially create confusion. The trick is to know what to keep and what to forget.
This was the intuition behind the somewhat oddly named long short-term memory
(LSTM) (Hochreiter and Schmidhuber, 1997). To achieve this selective memory, it
includes various activation functions and gates (see Figure 26 for a schematic).

In keras, we can relatively easily implement an LSTM or Bi-LSTM.

from
from
from
from

import numpy as np

keras
keras
keras
keras

.models
.layers
.layers
.layers

import Model

Embedding

LSTM
Activation

import Input,
import Bidirectional,

import Dropout, Dense,

Set a random seed for reproducibility

np.random.seed (42)

inputs = Input ((MAX_LENGTH,),
name="'word_IDs")
embeddings = Embedding (input_dim=len (word2int),

output_dim=128,
mask_zero=True,

15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

lstm

for a Bi-LSTM,

(concatenate) (concatenate) ()
."——-—" —

14. NEURAL ARCHITECTURES AND MODELS

BACKNARD
"PRON | veRB | PRoPN | PROPN

=

T |

-

- B

—

PrIz o
-
[

'..l.'.'l‘ f....
B i« B

'llliJ‘ll
R

ol | Ressonial

-

LLLTY anen

—t

TTTTY FELee

ez
: F

X.

.I..J
=

.
.
LELLY

)

=
s
)

FORN ARD

FIGURE 25. Bi-directional recurrent neural network architecture for

POS tagging.

name="'"embeddings') (inputs)

LSTM (units=256,
return_sequences=True,
name="LSTM") (embeddings)

replace the line above with this:

from keras.layers import Bidirectional

#bilst
#
#
dropou
lstm_o
output

model
model.

m

t
ut

summary ()

Dropout (0.3,
Dense (len(tag2int),
Activation('softmax',

Model (inputs=[inputs],

Bidirectional (LSTM(units=256,

return_sequences=True),
name="Bi-LSTM") (embeddings)
name='"dropout ') (1lstm)
name="'"output') (dropout)
name='softmax') (1lstm_out)

outputs=[output])

CODE 77. A (Bi-)LSTM in keras.

To train the model and log the output, we can use this code:

batch_size

epochs

32

5

180

SimeLE RNN L.STM

#sssasanansnsanansnsanansnsnnananihs, BEEEAEARARREREEREEEERARARRRREEERES
"

AL

\ 4
v

A 4

FIGURE 26. Internal structure of the simple RNN and the LSTM hidden state.

3

4 # compile the model we have defined above

5 model.compile (loss="'categorical crossentropy',
6 optimizer="'adam',

7 metrics=["'accuracy']

8)

9
10 # run training and capture ouput log
11 history = model.fit (train_sentences, train_tags_lhot,
12 batch_size=batch_size,
13 epochs=epochs,
14 verbose=1,
15 validation_split=0.2)

CODE 78. Compiling and training a keras model.

14.3. Attention. We have repeatedly touched upon the importance of context, and

the value of selective memory. It turns out that there is a way to combine these two

attention Thank you aspects. The mechanism is called attention. It was first introduced in machine trans-
for your attention! lation, where it is necessary to align the words in the sentences of the input and output
languages. These alignments are not always one to one. For example, the English “not”

corresponds to a “ne [...] pas” in French. The English dummy “do” (in questions) or

14. NEURAL ARCHITECTURES AND MODELS 181

the impersonal German “es” (in generic statements) often have no corresponding word
in other languages.

To capture these correspondences, Bahdanau et al. (2015) introduced the attention
mechanism, later refined by Luong et al. (2015). It is essentially a heat map of the token
correlations in both sentences. Higher values mean more correlated words. To compute
a value a;; in the attention matrix a, we first score the influence of each hidden states on
the word j. We then normalize each hidden state vector ¢ by its normalized score, and
sum it up. By making this matrix a parameter of the model, the scoring is learned along
with the other parameters of the network.

The law is not perfect , but its application is just

The

law

is

not

perfect

r

but

its

application

is

just

FIGURE 27. Self-attention in a CNN.

Attention works very well for word alignment of input and output in machine trans-
lation (see Figure 28), but it soon turned out to be useful for classification, by capturing
complex expressions. When attention is applied to the input and a copy of itself, it cap-
tures long-term syntactic and semantic relations between words (see example in Figure
27). Adding this self-attention to CNNs made them better at classification, without
increasing the parameter space too much.

14.4. The Transformer. For a while, it was unclear which architecture was better
for text analysis, CNNs or RNNs. Much of the discussion focused on contextuality
and long-range dependencies. Attention resolved this question, albeit by replacing both
architectures with a third one: the Transformer.

self-attention

Transformer

encoder
decoder

query, key, and value

182

Economic growth has slowed down in recent years

Das

Wirtschafts-

wachstum

/ hat

/\/ sich

P

V in

7f' den
letzten
Jahren

FIGURE 28. Attention in a RNN.

Vaswani et al. (2017) introduced the Transformer model. It combined the best of
both worlds: selective long range-dependency of LSTMs, and the aggregate context of
CNNs. As a result, Transformer-based architectures have dominated the leaderboards
of various NLP tasks since. The architecture of the Transformer is like a series of
Russian dolls: two parts with six elements each, where each of the first six has two parts
(one of which is replicated eight times), and each of the second six has three elements.®

At the highest level, the Transformer consists of two components: an encoder and
a decoder (see Figure 29). Both of them are made up of stacks of six smaller elements,
which sequentially process the input sentence.’

Each of the encoder stack elements has two parts: a self-attention over the input,
which is then fed into a simple feed-forward neural network. Self-attention is simply
the correlation of all input words with all other input words. The self-attention is where
most of the magic of the Transformer happens. We first create three hidden state “views”
of the input, called the query, key, and value (each derived from the input via a dedi-
cated weight set). We combine the key and query vectors, and compute the probability

8For an animated step-by-step visualization of the Transformer, see http://jalammar.

github.io/illustrated-transformer/.
The number six is arbitrary, and can be changed.

14. NEURAL ARCHITECTURES AND MODELS 183

Mause moégen Kase

Encoder

FeedForw FeedForw FeedfForw
FeedForw FeedForw FeedForw

f ? 1 ?coder—Dec*ier—Attentitx

Self-Attention Self-Attention

T T T FeeqForw FeedForw FeedfForw

FeedForw FeedForw FeedForw ?coder-Dec*der-Attenti(x

A

Self-Attention

Self-Attention

i A I | [
[[[[[] [[T [([T []
Mice like cheese

FIGURE 29. A schematic of the transformer.

distribution over the normalized sums, then multiply the result with the value vector
(see Figure 30).

This process is repeated eight times in each layer,'’ once by each attention head.
This has a similar effect as running several filters of the same region size in CNNs.
Each attention head learns to attend to a different aspect of the data. For example, one
might capture coreference relations between pronouns and their referents. Another one
might capture verbal relations. The output of the eight heads is reduced to a single self-
attention result before it is fed through a feedforward neural network, which produces
an output for each word.

Self-attention and the multiple heads capture a lot of local context, but they are still
local. IL.e., they lose where in the sentence a word came from. In order to encode this
positional component, the input embeddings are multiplied with a positional encoding.
One of the ways in which this can be done is with a long sinusoidal wave.

The combination of self-attention with eight heads plus network is one of the six
encoding elements. These elements are stacked, with each element receiving the output

10A gain, this is number is an arbitrary choice.

attention head

positional encoding

184

Sum EEE T EEm
E VALVE EEE
SOFTM AX
LOpE
EEE = HEE B EEE =
SCOorRE = - B
EETEN | | |
TN | I |
EEMEN [|
VALVE
| O]
| g]
] g |
KEY
ol A‘f 4 I
EELEN []
WUERY
EEEEN EEEEEN EEEEE
Mice like cheese

FIGURE 30. A simplified schematic of the Transformer encoder stack.

of the previous one. For the output of the last encoder, we again compute a key, and
value vector, to produce an overall encoding representation.

This final encoding representation is passed on to each of the six decoders. (There
are as many decoders as encoders.) In addition to the encoding input, each decoder
receives the output of the previous decoding element. Each decoder again has several
components: a self-attention layer, which is then combined with attention over the
encoder element, and a feedforward network. The final decoder output is passed
through a softmax layer for prediction.

The cost of the model is its complexity: in order to train the numerous parame-
ters of a Transformer, we need sufficient data and computing power. While the former
is becoming less of an issue, the latter has attracted some attention. The machines
necessary for training have a substantial energy consumption, which impacts the
environment (Strubell et al., 2019).

14. NEURAL ARCHITECTURES AND MODELS 185

14.5. Neural Language Models. Neural networks also changed the field of lan-
guage models, a class of self-supervised models. Each word serves as the input and as
the output of the previous word. Traditionally, these models used probabilistic frame-
works to compute how likely a sequence of words were. For computational feasibility,
this involved computing the probability of each word in the limited context of the pre-
vious n words. L.e., we would break the probability of a sentence down into the product
of the conditional probabilities of a word given its limited history of n previous words,
P(wi]wi,n, ceey U)Z‘,l).

Recurrent neural networks expanded this history-limitation to include potentially
unlimited prior context. As a result, language models got a lot better. The Transformer
also made a mark on this field. Using its best-of-both-worlds capabilities, a language
model based on the Transformer captures both long-range dependencies and local
coherence. The most famous Transformer-based language model is GPT (Radford
et al., 2018). It was so convincing in producing realistic-looking text that the inventors
did not release the full model initially, for fear of abuse. They eventually released a
scaled-down version in GPT2 (Radford et al., 2019) and a companion piece discussing
the implications (Solaiman et al., 2019).

Another Transformer-based language model is BERT (Devlin et al., 2019). BERT
officially stands for Bidirectional Encoder Representations from Transformers, follow-
ing an unexplained trend to name embedding models after Sesame Street characters. It
uses the Transformer, but in both directions, to perform a cloze tasks (i.e., fill the blank).
It takes as sentence in context and learns a representation encoding of it, while learn-
ing to predict randomly blanked out words (i.e., they are replaced with a MASK token).
BERT uses a special classification token (CLS) at the beginning of each sentence, which
represents the entire sentence, and is often used as input to classifiers. See Figure 31 for
an example.

These representations have proven so adept at capturing semantic and syntactic in-
formation, that they have improved almost any task where they were used. This includes
both NLP tasks and social science applications: Vicinanza et al. (2020) used a BERT-
based measure of prescience to predict which ideas will become influential in a field.
BERT’s success has been so complete that a cottage-industry of papers dissecting BERT
and its capabilities has emerged. Some people are now speaking (only half-joking) of
BERTology (Rogers et al., 2020).

The original paper included a multilingual version, which allows training a model
on one language where we have a lot of data (say, English), and applying it to another
language (zero-shot learning). A wealth of language-specific versions has emerged
since, which usually perform better for that particular language (Nozza et al., 2020), but
of course do not facilitate cross-lingual learning.

self-supervised

GPT

zero-shot learning

186

¥ o
VOC ABULARY s\"" >
< 2
LS o

512
EEEEN
[CLS] Mice [MASK] cheese -PAD- FALDING -PAD-
START M ASK

1 2 3 4 5
] L[] HEEEEE NEEEN [L]

FIGURE 31. A schematic of BERT

All of these models have emerged in a very short amount of time, but have steadily
increased in capabilities and performance. It is not clear what we will see in the next
few years, but it is clear that we have not reached the end yet. There are still tasks to
be solved, and we are only now starting to see applications to new areas of language
understanding. These developments might upend everything written here, or they might
build on it. Either way, I hope this book has enabled you to tackle them in stride!

Index

K-Means, 71 central limit theorem, 121
P(x), 205 centroids, 71

k-fold cross-validation, 115 channels, 174

n-gram, 18 classes, 52, 98, 106
doc2vec, 47 classification, 98
gensim, 12 classifiers, 106

nltk, 12 closed-class words, 19
spacy, 12 collaborative filtering, 62
word2vec, 42 collocations, 57

color channel, 67

column vector, 28

complete linkage criterion, 72
completeness, 75

computational graph, 169
conditional probability, 206
connectivity matrix, 73

content words, 19

context words, 41
context-dependent, 139
continuous bag of words (CBOW) model, 42
continuous dimensions, 27
convolutional neural network, 160
corpus, 14

cosine similarity, 39

count matrix, 31

count vector, 31

cross-entropy, 170

accuracy, 117

activation function, 163
adjacency matrix, 73
adjectives, 19

adversarial learning, 102, 132
agglomerative clustering, 72
ambiguous, 139

annotation bias, 100, 112
annotation models, 101, 113
annotations, 112

antonyms, 41

attention, 159, 180

attention head, 183

author attribute prediction, 106
Author Topic Model, 90
availability heuristic, 103
average linkage criterion, 72

backpropagation, 161

bag of words, 31 data likelihood, 86

base form, 16 data matrix, 28, 106
baseline, 120 data statement, 101
bi-directional RNN, 177 decision boundary, 167
bias, 100 decoder, 182

bias confirmation, 102, 131 demographic bias, 100
bias term, 107, 163 dense, 27

bigrams, 18 dependency relations, 23
bootstrapping, 121 descriptive ethics, 104

187

188 INDEX

development set, 115 grammatical function, 23
dictionary methods, 37 greedy inference, 142
Dirichlet distribution, 85, 209 ground truth, 106
discounting, 80 groups, 52

discrete features, 27 guided LDA, 92

discrete probability distributions, 207
discrete representations, 27
distributed representations, 27
distributional semantics, 39
document embeddings, 47

document frequency, 34

documents, 14

dropout, 171

dual use, 100

Hidden Markov Model, 141
hierarchical softmax, 44
homogeneity, 75
hyperparameter, 85
hyperplane, 128

inputs, 29

inter-annotator agreement, 113
intrusion test; 89

eigenvalues, 63 ¥nverse, 35

embeddings, 27 inverse document frequency, 35

empiricism, 50 irregular verbs, 16

encoder, 182
entropy, 55, 90
error function, 161

joint probability, 57, 206
Jupyter notebooks, 12

error term, 125 kernel function, 128
exclusion, 101 Kullback-Leibler (KL) divergence, 67
Expectation Maximization, 86
LO norm, 127
F1 score, 118 L1 regularization, 126
false negatives, 117 L2 norm, 125
false positives, 117 L2 regularization, 125
feature engineering, 158 labels, 106
feature maps, 174 language models, 77
feature selection, 133 Laplace-smoothing, 80
feature vectors, 27 Lasso regression, 126
features, 106 latent dimensions, 62, 63
featurize, 124 Latent Dirichlet Allocation (LDA), 83
federated learning, 104 latent layer, 168
feed-forward neural network, 159 Latent Semantic Analysis, 42, 62
filter, 174 layers, 159
finetuning, 161 Leave-One-Out cross-validation, 116
fractional or expected counts, 130 lemma, 16
function words, 19 lemmatization, 16

linear algebra, 27

General Data Protection Regulation, 104 linear interpolation, 80

generate text, 81 linearly non-separable, 164

generative probabilistic models, 83 linkage criterion, 72

generative process, 84 log-probabilities, 205

generative story, 141 logistic regression, 106

Gibbs sampling, 86 long short-term memory (LSTM), 178
gold labels, 106

GPT, 185 macro-averaging, 119

grammaticalization, 57 majority baseline, 121

marginalize out, 79
marked, 33

Markov assumption, 78
Markov Chain, 141
Markov chains, 77
Markov order, 78

Markov properties, 141
matrices, 106

matrices and vectors, 28
matrix factorization, 62
maximum likelihood estimation, 79
micro-averaging, 119
model selection, 127
morphology, 14
multi-class, 108
multilayer perceptron, 159
multitask learning, 161

named entities, 22

named entity recognizer, 22
nearest neighbors, 40
negative sampling, 44
negative sampling rate, 45
neural networks, 158

Non-Negative Matrix Factorization, 64

normative ethics, 104

object, 23

one-hot, 170

open-class words, 19
origin, 39

outputs, 29
overamplification, 101, 131
overexposure, 103
overfitting, 124
overgeneralization, 102, 131

paragraph2vec, 47
parameters, 106
parsing, 20
part-of-speech tagging, 138
parts of speech, 19
patterns, 51
Perceptron, 159
perceptron, 160
performance, 114
perplexity, 90

plate notation, 85
Poisson distribution, 85
pooling, 175

INDEX

POS tagging, 20

positional encoding, 183
pre-trained embeddings, 45
Precision, 117

prediction, 98

prediction vs. explanation, 109
preprocessing, 58

Principal Component Analysis, 64
privacy, 100

probability distribution, 205

quantifiers, 52
query, key, and value, 182

rationalism, 50

Recall, 118

recurrent neural network, 160
regions, 174

regression, 98

regular expressions, 51
regular verbs, 16
regularization, 125

relational similarity prediction, 46
representation learning, 161
retrofitting, 94

Ridge regression, 126

row vector, 28

scalar, 29

scope, 139

selection bias, 100
self-attention, 181
self-supervised, 185
semantically related, 41
semantically similar, 41
semantics, 14

sentence splitting, 15
sentiment analysis, 106
sigmoid functions, 163
Silhouette method, 75
Singular Value Decomposition, 63
skipgram model, 42
slack, 130

smoothing, 80
softmax, 44, 109

spam filtering, 106
sparse, 27

statistical significance, 121
stem, 17

stemming, 17

189

190 INDEX

stopwords, 21 Z-score, 205
stride, 174 zero-shot learning, 185
structural topic model, 90 Zipf’s law, 30

Structured Perceptron, 140
structured prediction, 139
subject, 23

suffix, 17

support vectors, 128, 130
synonyms, 38

syntax, 14, 23

t-SNE, 67

targets, 106

term frequency, 29, 34
term-document matrix, 28
test set, 114

time complexity, 129
token, 14
tokenization, 15

topic coherence, 89
Topic models, 83
topic prior, 85
training, 114

training set, 114
Transformer, 181
trigrams, 18

true negatives, 117
true positives, 117
type, 14

underexposure, 102

unigrams, 18

universal function approximators, 168
unstructured data, 8

V-score, 75

vector space model, 41
vector space semantics, 46
vectors, 106

visualization, 63

Viterbi decoding, 142
vocabulary, 14

Ward clustering, 72
weighted directed graphs, 77
weights, 106

window size, 45

word, 15

word prior, 86

Bibliography

Adewole S Adamson and Avery Smith. 2018. Machine learning and health care dispar-
ities in dermatology. JAMA dermatology, 154(11):1247-1248.

Jalal S Alowibdi, Ugo A Buy, and Philip Yu. 2013. Empirical Evaluation of Profile
Characteristics for Gender Classification on Twitter. In Machine Learning and Appli-
cations (ICMLA), 2013 12th International Conference on, volume 1, pages 365-369.
IEEE.

Julia Angwin, Jeff Larson, Surya Mattu, and Lauren Kirchner. 2016. Machine bias.
ProPublica, May, 23.

Maria Antoniak and David Mimno. 2018. Evaluating the stability of embedding-based

word similarities. Transactions of the Association for Computational Linguistics,
6:107-119.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. 2014. Neural machine trans-
lation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. 2015. Neural machine trans-
lation by jointly learning to align and translate. In 3rd International Conference on
Learning Representations, ICLR 2015.

David Bamman, Brendan O’Connor, and Noah Smith. 2012. Censorship and deletion
practices in Chinese social media. First Monday, 17(3).

Emily M Bender and Batya Friedman. 2018. Data Statements for Natural Language Pro-
cessing: Toward Mitigating System Bias and Enabling Better Science. Transactions
of the Association for Computational Linguistics, 6:587-604.

Yoshua Bengio, Réjean Ducharme, Pascal Vincent, and Christian Jauvin. 2003. A neural
probabilistic language model. Journal of machine learning research, 3(Feb):1137-
1155.

Taylor Berg-Kirkpatrick, David Burkett, and Dan Klein. 2012. An empirical investiga-
tion of statistical significance in NLP. In Proceedings of the 2012 Joint Conference
on Empirical Methods in Natural Language Processing and Computational Natural
Language Learning, pages 995-1005. Association for Computational Linguistics.

191

192 Bibliography

Sudeep Bhatia. 2017. Associative judgment and vector space semantics. Psychological
review, 124(1):1.

Federico Bianchi, Silvia Terragni, and Dirk Hovy. 2020. Pre-training is a Hot Topic:
Contextualized Document Embeddings Improve Topic Coherence. arXiv preprint
arXiv:2004.03974.

David M Blei, Andrew Y Ng, and Michael I Jordan. 2003. Latent Dirichlet Allocation.
Journal of Machine Learning Research, 3(Jan):993—-1022.

Su Lin Blodgett, Lisa Green, and Brendan O’Connor. 2016. Demographic Dialectal
Variation in Social Media: A Case Study of African-American English. In Proceed-
ings of the 2016 Conference on Empirical Methods in Natural Language Processing,
pages 1119-1130.

Tolga Bolukbasi, Kai-Wei Chang, James Y Zou, Venkatesh Saligrama, and Adam T
Kalai. 2016. Man is to computer programmer as woman is to homemaker? debias-
ing word embeddings. In Advances in neural information processing systems, pages

4349-4357.

Jordan Boyd-Graber, David Mimno, and David Newman. 2014. Care and Feeding
of Topic Models: Problems, Diagnostics, and Improvements, CRC Handbooks of
Modern Statistical Methods. CRC Press, Boca Raton, Florida.

Kakia Chatsiou and Slava Jankin Mikhaylov. 2020. Deep learning for political science.
arXiv preprint arXiv:2005.06540.

Stanley F. Chen and Joshua Goodman. 1996. An Empirical Study of Smoothing Tech-
niques for Language Modeling. In 34th Annual Meeting of the Association for Com-
putational Linguistics.

Francois Chollet. 2017. Deep learning with python. Manning Publications Co.

Morgane Ciot, Morgan Sonderegger, and Derek Ruths. 2013. Gender Inference of Twit-
ter Users in Non-English Contexts. In Proceedings of the 2013 Conference on Em-
pirical Methods in Natural Language Processing, Seattle, Wash, pages 18-21.

Maximin Coavoux, Shashi Narayan, and Shay B Cohen. 2018. Privacy-preserving Neu-
ral Representations of Text. In Proceedings of the 2018 Conference on Empirical
Methods in Natural Language Processing, pages 1-10.

Michael Collins. 2002. Discriminative Training Methods for Hidden Markov Models:
Theory and Experiments with Perceptron Algorithms. In Proceedings of the 2002
Conference on Empirical Methods in Natural Language Processing (EMNLP 2002),
pages 1-8. Association for Computational Linguistics.

Bibliography 193

David Crystal. 2003. The Cambridge Encyclopedia of the English Language, 3rd edi-
tion. Cambridge University Press.

Rajarshi Das, Manzil Zaheer, and Chris Dyer. 2015. Gaussian LDA for topic models
with word embeddings. In Proceedings of the 53rd Annual Meeting of the Association
for Computational Linguistics and the 7th International Joint Conference on Natural
Language Processing (Volume 1: Long Papers), pages 795-804.

Scott Deerwester, Susan T Dumais, George W Furnas, Thomas K Landauer, and
Richard Harshman. 1990. Indexing by latent semantic analysis. Journal of the Amer-
ican society for information science, 41(6):391-407.

Gary S Dell. 1986. A spreading-activation theory of retrieval in sentence production.
Psychological review, 93(3):283.

Arthur P Dempster, Nan M Laird, and Donald B Rubin. 1977. Maximum likelihood
from incomplete data via the EM algorithm. Journal of the Royal Statistical Society:
Series B (Methodological), 39(1):1-22.

Matthew J Denny and Arthur Spirling. 2018. Text preprocessing for unsupervised learn-
ing: why it matters, when it misleads, and what to do about it. Political Analysis,
26(2):168-189.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT:
Pre-training of Deep Bidirectional Transformers for Language Understanding. In
Proceedings of the 2019 Conference of the North American Chapter of the Associa-
tion for Computational Linguistics: Human Language Technologies, Volume 1 (Long
and Short Papers), pages 4171-4186.

Adji B Dieng, Francisco JR Ruiz, and David M Blei. 2019. Topic modeling in embed-
ding spaces. arXiv preprint arXiv:1907.04907.

Jacob Eisenstein. 2019. Introduction to natural language processing. Mit Press.

Yanai Elazar and Yoav Goldberg. 2018. Adversarial Removal of Demographic At-
tributes from Text Data. In Proceedings of the 2018 Conference on Empirical Meth-
ods in Natural Language Processing, pages 11-21.

James A Evans and Pedro Aceves. 2016. Machine translation: mining text for social
theory. Annual Review of Sociology, 42:21-50.

Manaal Faruqui, Jesse Dodge, Sujay Kumar Jauhar, Chris Dyer, Eduard Hovy, and
Noah A Smith. 2015. Retrofitting Word Vectors to Semantic Lexicons. In Proceed-
ings of the 2015 Conference of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies, pages 1606—1615.

194 Bibliography

John R Firth. 1957. A synopsis of linguistic theory, 1930-1955. Studies in linguistic
analysis.

Karén Fort, Gilles Adda, and K. Bretonnel Cohen. 2011. Last words: Amazon Mechan-
ical Turk: Gold mine or coal mine? Computational Linguistics, 37(2):413-420.

Victoria Fromkin, Robert Rodman, and Nina Hyams. 2018. An introduction to lan-
guage. Cengage Learning.

Juri Ganitkevitch, Benjamin Van Durme, and Chris Callison-Burch. 2013. PPDB: The
paraphrase database. In Proceedings of the 2013 Conference of the North American
Chapter of the Association for Computational Linguistics: Human Language Tech-
nologies, pages 758-764.

Nikhil Garg, Londa Schiebinger, Dan Jurafsky, and James Zou. 2018. Word embeddings
quantify 100 years of gender and ethnic stereotypes. Proceedings of the National
Academy of Sciences, 115(16):E3635-E3644.

Matthew Gentzkow, Bryan T Kelly, and Matt Taddy. 2017. Text as data. Technical
report, National Bureau of Economic Research.

Yoav Goldberg. 2016. A primer on neural network models for natural language pro-
cessing. Journal of Artificial Intelligence Research, 57:345-420.

Yoav Goldberg. 2017. Neural network methods for natural language processing. Syn-
thesis Lectures on Human Language Technologies, 10(1):1-309.

Yoav Goldberg and Omer Levy. 2014. word2vec Explained: deriving Mikolov et al.’s
negative-sampling word-embedding method. arXiv preprint arXiv:1402.3722.

Daniel G Goldstein and Gerd Gigerenzer. 2002. Models of ecological rationality: the
recognition heuristic. Psychological review, 109(1):75.

Edouard Grave, Piotr Bojanowski, Prakhar Gupta, Armand Joulin, and Tomas Mikolov.
2018. Learning Word Vectors for 157 Languages. In Proceedings of the International
Conference on Language Resources and Evaluation (LREC 2018).

Kevin T Greene, Backkwan Park, and Michael Colaresi. 2019. Machine learning human
rights and wrongs: How the successes and failures of supervised learning algorithms
can inform the debate about information effects. Political Analysis, 27(2):223-230.

Justin Grimmer and Brandon M Stewart. 2013. Text as data: The promise and pitfalls of
automatic content analysis methods for political texts. Political analysis, 21(3):267—
297.

William L Hamilton, Jure Leskovec, and Dan Jurafsky. 2016. Diachronic Word Em-
beddings Reveal Statistical Laws of Semantic Change. In Proceedings of the 54th

Bibliography 195

Meeting of the Association for Computational Linguistics, pages 1489-1501. Asso-
ciation for Computational Linguistics.

Jochen Hartmann, Juliana Huppertz, Christina Schamp, and Mark Heitmann. 2018.
Comparing automated text classification methods. International Journal of Research
in Marketing.

Drew Harwell. 2018. The accent gap. Why some accents don’t work on Alexa or Google
Home. The Washington Post.

Joseph Henrich, Steven J Heine, and Ara Norenzayan. 2010. The weirdest people in the
world? Behavioral and brain sciences, 33(2-3):61-83.

Geoffrey E Hinton, Nitish Srivastava, Alex Krizhevsky, Ilya Sutskever, and Ruslan R
Salakhutdinov. 2012. Improving neural networks by preventing co-adaptation of fea-
ture detectors. In Advances in neural information processing systems.

Sepp Hochreiter and Jiirgen Schmidhuber. 1997. Long short-term memory. Neural
computation, 9(8):1735-1780.

Jake M Hofman, Amit Sharma, and Duncan J Watts. 2017. Prediction and explanation
in social systems. Science, 355(6324):486—488.

Dirk Hovy. 2010. An Evening with... EM. Technical report, University of Southern
California.

Dirk Hovy. 2016. The Enemy in Your Own Camp: How Well Can We Detect
Statistically-Generated Fake Reviews—An Adversarial Study. In Proceedings of the
54th Annual Meeting of the Association for Computational Linguistics. Association
for Computational Linguistics.

Dirk Hovy, Taylor Berg-Kirkpatrick, Ashish Vaswani, and Eduard Hovy. 2013. Learn-
ing whom to trust with MACE. In Proceedings of the 2013 Conference of the North
American Chapter of the Association for Computational Linguistics: Human Lan-
guage Technologies, pages 1120—-1130.

Dirk Hovy and Tommaso Fornaciari. 2018. Improving Author Attribute Prediction by
Retrofitting Linguistic Representations with Homophily. In Proceedings of the 2018
Conference on Empirical Methods in Natural Language Processing, pages 671-677.

Dirk Hovy and Christoph Purschke. 2018. Capturing Regional Variation with Dis-
tributed Place Representations and Geographic Retrofitting. In Proceedings of the
2018 Conference on Empirical Methods in Natural Language Processing, pages
4383-4394.

Dirk Hovy, Afhsin Rahimi, Tim Baldwin, and Julian Brooke. 2019. Visualizing Re-
gional Language Variation Across Europe on Twitter. In Stanley D. Brunn and

196 Bibliography

Roland Kehrein, editors, Handbook of the Changing World Language Map. Dor-
drecht: Springer.

Dirk Hovy and Anders S@gaard. 2015. Tagging performance correlates with author age.
In Proceedings of the 53rd Annual Meeting of the Association for Computational Lin-
guistics and the 7th International Joint Conference on Natural Language Processing
(Volume 2: Short Papers), volume 2, pages 483—488.

Dirk Hovy and Shannon L Spruit. 2016. The social impact of natural language process-
ing. In Proceedings of the 54th Annual Meeting of the Association for Computational
Linguistics (Volume 2: Short Papers), volume 2, pages 591-598.

Hongzhao Huang, Zhen Wen, Dian Yu, Heng Ji, Yizhou Sun, Jiawei Han, and He Li.
2013. Resolving entity morphs in censored data. In Proceedings of the 51st Annual
Meeting of the Association for Computational Linguistics (Volume 1: Long Papers),
volume 1, pages 1083—-1093.

Ashlee Humphreys and Rebecca Jen-Hui Wang. 2017. Automated text analysis for
consumer research. Journal of Consumer Research, 44(6):1274—1306.

Jagadeesh Jagarlamudi, Hal Daumé III, and Raghavendra Udupa. 2012. Incorporating
lexical priors into topic models. In Proceedings of the 13th Conference of the Eu-
ropean Chapter of the Association for Computational Linguistics, pages 204-213.
Association for Computational Linguistics.

Fred Jelinek and Robert Mercer. 1980. Interpolated estimation of Markov source pa-
rameters from sparse data. In Proceedings Workshop Pattern Recognition in Practice,
pages 381-397.

Hans Jonas. 1984. The Imperative of Responsibility: Foundations of an Ethics for the
Technological Age. (Original in German: Prinzip Verantwortung.) Chicago: Univer-
sity of Chicago Press.

Anna Jgrgensen, Dirk Hovy, and Anders Sggaard. 2015. Challenges of studying and
processing dialects in social media. In Proceedings of the Workshop on Noisy User-
generated Text, pages 9-18.

Dan Jurafsky. 2014. The language of food: A linguist reads the menu. WW Norton &
Company.

Dan Jurafsky and James H Martin. 2014. Speech and language processing, 3rd edition.
Pearson London.

Slava Katz. 1987. Estimation of probabilities from sparse data for the language model

component of a speech recognizer. [EEE transactions on acoustics, speech, and
signal processing, 35(3):400-401.

Bibliography 197

Svetlana Kiritchenko and Saif Mohammad. 2018. Examining Gender and Race Bias
in Two Hundred Sentiment Analysis Systems. In Proceedings of the Seventh Joint
Conference on Lexical and Computational Semantics, pages 43-53.

Jakub Konec¢ny, H Brendan McMahan, Felix X Yu, Peter Richtarik, Ananda Theertha
Suresh, and Dave Bacon. 2016. Federated learning: Strategies for improving com-
munication efficiency. arXiv preprint arXiv:1610.05492.

Austin C Kozlowski, Matt Taddy, and James A Evans. 2018. The geometry of culture:
Analyzing meaning through word embeddings. arXiv preprint arXiv:1803.09288.

Vivek Kulkarni, Rami Al-Rfou, Bryan Perozzi, and Steven Skiena. 2015. Statistically
significant detection of linguistic change. In Proceedings of the 24th International
Conference on World Wide Web, pages 625-635. International World Wide Web Con-
ferences Steering Committee.

William Labov. 1972. Sociolinguistic patterns. University of Pennsylvania Press.

Thomas K Landauer and Susan T Dumais. 1997. A solution to Plato’s problem: The
latent semantic analysis theory of acquisition, induction, and representation of knowl-
edge. Psychological review, 104(2):211.

Serge Lang. 2012. Introduction to linear algebra. Springer Science & Business Media.

Jey Han Lau and Timothy Baldwin. 2016. An Empirical Evaluation of doc2vec with
Practical Insights into Document Embedding Generation. page 78.

Quoc Le and Tomas Mikolov. 2014. Distributed representations of sentences and doc-
uments. In Proceedings of the 31st International Conference on Machine Learning
(ICML-14), pages 1188-1196.

Willem JM Levelt. 1993. Speaking: From intention to articulation, volume 1. MIT
press.

Gideon Lewis-Kraus. 2016. The great Al awakening. The New York Times Magazine,
14.

Yitong Li, Timothy Baldwin, and Trevor Cohn. 2018. Towards Robust and Privacy-
preserving Text Representations. In Proceedings of the 56th Annual Meeting of the
Association for Computational Linguistics (Volume 2: Short Papers), volume 2, pages
25-30.

Wendy Liu and Derek Ruths. 2013. What’s in a name? Using first names as features for
gender inference in Twitter. In Analyzing Microtext: 2013 AAAI Spring Symposium.

Edward Loper and Steven Bird. 2002. NLTK: The Natural Language Toolkit. In Pro-
ceedings of the ACL-02 Workshop on Effective Tools and Methodologies for Teaching
Natural Language Processing and Computational Linguistics.

198 Bibliography

Thang Luong, Hieu Pham, and Christopher D. Manning. 2015. Effective Approaches to
Attention-based Neural Machine Translation. In Proceedings of the 2015 Conference
on Empirical Methods in Natural Language Processing, pages 14121421, Lisbon,
Portugal. Association for Computational Linguistics.

Laurens van der Maaten and Geoffrey Hinton. 2008. Visualizing data using t-SNE.
Journal of machine learning research, 9(Nov):2579-2605.

Christopher D Manning. 2015. Computational linguistics and deep learning. Computa-
tional Linguistics, 41(4):701-707.

Christopher D Manning and Hinrich Schiitze. 1999. Foundations of statistical natural
language processing. MIT press.

Stephen Marsland. 2011. Machine learning: an algorithmic perspective. Chapman and
Hall/CRC.

Stephen Marsland. 2015. Machine learning: an algorithmic perspective, 2nd edition.
Chapman and Hall/CRC.

Ryan McDonald, Joakim Nivre, Yvonne Quirmbach-Brundage, Yoav Goldberg, Dipan-
jan Das, Kuzman Ganchev, Keith Hall, Slav Petrov, Hao Zhang, Oscar Tackstrom,
et al. 2013. Universal dependency annotation for multilingual parsing. In Proceed-
ings of the 51st Annual Meeting of the Association for Computational Linguistics
(Volume 2: Short Papers), volume 2, pages 92-97.

Nicolai Meinshausen and Peter Biihlmann. 2010. Stability selection. Journal of the
Royal Statistical Society: Series B (Statistical Methodology), 72(4):417-473.

Tomas Mikolov, Martin Karafiat, Lukas Burget, Jan Cernooky, and Sanjeev Khudanpur.
2010. Recurrent neural network based language model. In Eleventh annual confer-
ence of the international speech communication association.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. 2013. Dis-
tributed representations of words and phrases and their compositionality. In Advances
in neural information processing systems, pages 3111-3119.

George A Miller. 1995. WordNet: a lexical database for English. Communications of
the ACM, 38(11):39-41.

Sara Mills. 2012. Gender matters: Feminist linguistic analysis. Equinox Pub.

David Mimno, Hanna Wallach, Edmund Talley, Miriam Leenders, and Andrew McCal-
lum. 2011. Optimizing Semantic Coherence in Topic Models. In Proceedings of

the 2011 Conference on Empirical Methods in Natural Language Processing, pages
262-272.

Marvin Minsky and Seymour A Papert. 1969. Perceptrons. MIT press.

Bibliography 199

Ehsan Mohammady and Aron Culotta. 2014. Using county demographics to infer at-
tributes of twitter users. In Proceedings of the joint workshop on social dynamics and
personal attributes in social media, pages 7-16.

Mehryar Mohri, Afshin Rostamizadeh, and Ameet Talwalkar. 2018. Foundations of
machine learning. MIT press.

Frederick Mosteller and David L. Wallace. 1963. Inference in an authorship problem: A
comparative study of discrimination methods applied to the authorship of the disputed
Federalist Papers. Journal of the American Statistical Association, 58(302):275-3009.

Robert Munro. 2013. NLP for all languages. Idibon Blog, May 22
http://idibon.com/nlp-for-all Retrieved May 17, 2016.

Kevin P Murphy. 2012. Machine learning: a probabilistic perspective. MIT Press.

Dong Nguyen, Noah A Smith, and Carolyn P Rosé. 2011. Author age prediction from
text using linear regression. In Proceedings of the S5th ACL-HLT Workshop on Lan-
guage Technology for Cultural Heritage, Social Sciences, and Humanities, pages
115-123. Association for Computational Linguistics.

Vlad Niculae, Srijan Kumar, Jordan Boyd-Graber, and Cristian Danescu-Niculescu-
Mizil. 2015. Linguistic Harbingers of Betrayal: A Case Study on an Online Strategy
Game. In Proceedings of the 53rd Annual Meeting of the Association for Computa-
tional Linguistics and the 7th International Joint Conference on Natural Language
Processing (Volume 1: Long Papers), volume 1, pages 1650-1659.

Joakim Nivre, Zeljko Agi¢, Maria Jesus Aranzabe, Masayuki Asahara, Aitziber Atutxa,
Miguel Ballesteros, John Bauer, Kepa Bengoetxea, Riyaz Ahmad Bhat, Cristina
Bosco, et al. 2015. Universal Dependencies 1.2.

Joakim Nivre, Marie-Catherine de Marneffe, Filip Ginter, Yoav Goldberg, Jan Hajic,
Christopher D. Manning, Ryan McDonald, Slav Petrov, Sampo Pyysalo, Natalia Sil-
veira, Reut Tsarfaty, and Daniel Zeman. 2016. Universal Dependencies v1: A Multi-
lingual Treebank Collection. In Proceedings of the Tenth International Conference on
Language Resources and Evaluation (LREC’16), pages 1659—1666, Portoroz, Slove-
nia. European Language Resources Association (ELRA).

Debora Nozza, Federico Bianchi, and Dirk Hovy. 2020. What the [MASK]? Making
Sense of Language-Specific BERT Models. arXiv preprint arXiv:2003.02912.

Cathy O’Neil. 2016. The Ethical Data Scientist. Slate, February 4
http://www.slate.com/articles/
technology/future_tense/2016/02/
how_to_bring_better_ethics_to_data_
science.html Retrieved Feb 24, 2016.

200 Bibliography

Gregory Park, H Andrew Schwartz, Johannes C Eichstaedt, Margaret L. Kern, Michal
Kosinski, David J Stillwell, Lyle H Ungar, and Martin EP Seligman. 2015. Automatic
personality assessment through social media language. Journal of personality and
social psychology, 108(6):934.

Rebecca J. Passonneau and Bob Carpenter. 2014. The benefits of a model of annotation.
Transactions of the Association for Computational Linguistics, 2:311-326.

Silviu Paun, Bob Carpenter, Jon Chamberlain, Dirk Hovy, Udo Kruschwitz, and Mas-
simo Poesio. 2018. Comparing Bayesian Models of Annotation. Transactions of the
Association for Computational Linguistics, 6:571-585.

Ellie Pavlick, Matt Post, Ann Irvine, Dmitry Kachaev, and Chris Callison-Burch. 2014.
The language demographics of Amazon Mechanical Turk. Transactions of the Asso-
ciation for Computational Linguistics, 2:79-92.

James W. Pennebaker. 2011. The Secret Life of Pronouns: What Our Words Say About
Us. Broadway: Bloomsbury Press.

James W Pennebaker, Martha E Francis, and Roger J Booth. 2001. Linguistic in-
quiry and word count: LIWC 2001. Mahway: Lawrence Erlbaum Associates,
71(2001):2001.

Jeffrey Pennington, Richard Socher, and Christopher D Manning. 2014. Glove: Global
vectors for word representation. In Proceedings of the 2014 conference on empirical
methods in natural language processing (EMNLP), pages 1532—1543.

Andrew Peterson and Arthur Spirling. 2018. Classification accuracy as a substantive
quantity of interest: Measuring polarization in westminster systems. Political Analy-
sis, 26(1):120-128.

Slav Petrov, Dipanjan Das, and Ryan McDonald. 2011. A universal part-of-speech
tagset. In Proceedings of LREC.

Barbara Plank, Dirk Hovy, and Anders Sggaard. 2014. Learning part-of-speech taggers
with inter-annotator agreement loss. In Proceedings of the 14th Conference of the
European Chapter of the Association for Computational Linguistics, pages 742—751.

Dean A Pomerleau. 1989. Alvinn: An autonomous land vehicle in a neural network. In
Advances in neural information processing systems, pages 305-313.

Dean A Pomerleau. 2012. Neural network perception for mobile robot guidance, vol-
ume 239. Springer Science & Business Media.

Martin F Porter. 1980. An algorithm for suffix stripping. Program, 14(3):130-137.

Vinodkumar Prabhakaran, Owen Rambow, and Mona Diab. 2012. Predicting overt dis-
play of power in written dialogs. In Proceedings of the 2012 Conference of the North

Bibliography 201

American Chapter of the Association for Computational Linguistics: Human Lan-
guage Technologies, pages 518-522. Association for Computational Linguistics.

Daniel Preotiuc-Pietro, Vasileios Lampos, and Nikolaos Aletras. 2015a. An analysis of
the user occupational class through Twitter content. In ACL.

Daniel Preotiuc-Pietro, Svitlana Volkova, Vasileios Lampos, Yoram Bachrach, and
Nikolaos Aletras. 2015b. Studying user income through language, behaviour and
affect in social media. PloS one, 10(9):e0138717.

Christoph Purschke and Dirk Hovy. 2019. Lorres, Moppes, and the Swiss.
(Re)Discovering Regional Patterns in Anonymous Social Media Data. Journal of
Linguistic Geography.

Alec Radford, Karthik Narasimhan, Tim Salimans, and Ilya Sutskever. 2018. Improv-
ing language understanding by generative pre-training. URL https://s3-us-west-2.
amazonaws. com/openai-assets/researchcovers/languageunsupervised/language un-
derstanding paper. pdf.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, and Ilya
Sutskever. 2019. Language models are unsupervised multitask learners. OpenAl
Blog, 1(8):9.

Philip Resnik and Eric Hardisty. 2010. Gibbs sampling for the uninitiated. Technical
report, Maryland Univ College Park Inst for Advanced Computer Studies.

Margaret E Roberts, Brandon M Stewart, Dustin Tingley, Edoardo M Airoldi, et al.
2013. The structural topic model and applied social science. In Advances in neural
information processing systems workshop on topic models: computation, application,
and evaluation, pages 1-20. Harrahs and Harveys, Lake Tahoe.

Michael Roder, Andreas Both, and Alexander Hinneburg. 2015. Exploring the space of
topic coherence measures. In Proceedings of the eighth ACM international confer-
ence on Web search and data mining, pages 399-408.

Phillip Rogaway. 2015. The Moral Character of Cryptographic Work. Technical report,
IACR-Cryptology ePrint Archive.

Anna Rogers, Olga Kovaleva, and Anna Rumshisky. 2020. A Primer in BERTology:
What we know about how BERT works. arXiv preprint arXiv:2002.12327.

Xin Rong. 2014. word2vec parameter learning explained. arXiv preprint
arXiv:1411.2738.

Frank Rosenblatt. 1958. The perceptron: a probabilistic model for information storage
and organization in the brain. Psychological review, 65(6):386.

202 Bibliography

Sara Rosenthal and Kathleen McKeown. 2011. Age prediction in blogs: A study of
style, content, and online behavior in pre-and post-social media generations. In
Proceedings of the 49th Annual Meeting of the Association for Computational Lin-
guistics: Human Language Technologies-Volume 1, pages 763—772. Association for
Computational Linguistics.

Rachel Rudinger, Jason Naradowsky, Brian Leonard, and Benjamin Van Durme. 2018.
Gender Bias in Coreference Resolution. In Proceedings of the 2018 Conference of the
North American Chapter of the Association for Computational Linguistics: Human
Language Technologies, Volume 2 (Short Papers), volume 2, pages 8—14.

Maarten Sap, Dallas Card, Saadia Gabriel, Yejin Choi, and Noah A. Smith. 2019. The
risk of racial bias in hate speech detection. In Proceedings of the 57th Conference
of the Association for Computational Linguistics, pages 1668—1678, Florence, Italy.
Association for Computational Linguistics.

Tyler Schnoebelen. 2013. The weirdest languages. Idibon Blog, June 21
http://idibon.com/the-weirdest—
languages Retrieved May 17, 2016.

H Andrew Schwartz, Johannes Eichstaedt, Eduardo Blanco, Lukasz Dziurzynski, Mar-
garet Kern, Stephanie Ramones, Martin Seligman, and Lyle Ungar. 2013. Choosing
the right words: Characterizing and reducing error of the word count approach. In
Second Joint Conference on Lexical and Computational Semantics (* SEM), Volume
1: Proceedings of the Main Conference and the Shared Task: Semantic Textual Simi-
larity, pages 296-305.

Galit Shmueli et al. 2010. To explain or to predict? Statistical science, 25(3):289-310.

Rion Snow, Brendan O’Connor, Daniel Jurafsky, and Andrew Ng. 2008. Cheap and
fast — but is it good? evaluating non-expert annotations for natural language tasks.
In Proceedings of the 2008 Conference on Empirical Methods in Natural Language
Processing, pages 254-263, Honolulu, Hawaii. Association for Computational Lin-
guistics.

Irene Solaiman, Miles Brundage, Jack Clark, Amanda Askell, Ariel Herbert-Voss, Jeff
Wu, Alec Radford, and Jasmine Wang. 2019. Release strategies and the social impacts
of language models. arXiv preprint arXiv:1908.09203.

Karen Spirck Jones. 1972. A statistical interpretation of term specificity and its appli-
cation in retrieval. Journal of documentation, 28(1):11-21.

Akash Srivastava and Charles Sutton. 2017. Autoencoding variational inference for
topic models. arXiv preprint arXiv:1703.01488.

Bibliography 203

Keith Stevens, Philip Kegelmeyer, David Andrzejewski, and David Buttler. 2012. Ex-
ploring Topic Coherence over Many Models and Many Topics. In Proceedings of
the 2012 Joint Conference on Empirical Methods in Natural Language Processing
and Computational Natural Language Learning, pages 952-961, Jeju Island, Korea.
Association for Computational Linguistics.

Emma Strubell, Ananya Ganesh, and Andrew McCallum. 2019. Energy and policy
considerations for deep learning in NLP. In Proceedings of the 57th Annual Meeting
of the Association for Computational Linguistics, pages 3645-3650, Florence, Italy.
Association for Computational Linguistics.

Cass R Sunstein. 2004. Precautions Against What? The Availability Heuristic and
Cross-Cultural Risk Perceptions. U Chicago Law & Economics, Olin Working Paper,
(220):04-22.

Rachael Tatman. 2017. Gender and Dialect Bias in YouTube’s Automatic Captions. In
Proceedings of the First ACL Workshop on Ethics in Natural Language Processing,
pages 53-59.

Joel Tetreault, Jill Burstein, and Claudia Leacock. 2015. Proceedings of the Tenth Work-
shop on Innovative Use of NLP for Building Educational Applications, chapter Pro-
ceedings of the Tenth Workshop on Innovative Use of NLP for Building Educational
Applications. Association for Computational Linguistics.

Peter Trudgill. 2000. Sociolinguistics: An introduction to language and society. Penguin
UK.

Amos Tversky and Daniel Kahneman. 1973. Availability: A heuristic for judging fre-
quency and probability. Cognitive psychology, 5(2):207-232.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N
Gomez, Lukasz Kaiser, and Illia Polosukhin. 2017. Attention is all you need. In
Advances in neural information processing systems, pages 5998—6008.

Paul Vicinanza, Amir Goldberg, and Sameer Srivastava. 2020. Who sees the future?
a deep learning language model demonstrates the vision advantage of being small.
SocArXiv. May, 26.

Svitlana Volkova, Yoram Bachrach, Michael Armstrong, and Vijay Sharma. 2015. In-
ferring Latent User Properties from Texts Published in Social Media (Demo). In Pro-
ceedings of the Twenty-Ninth Conference on Artificial Intelligence (AAAI), Austin,
TX.

Svitlana Volkova, Glen Coppersmith, and Benjamin Van Durme. 2014. Inferring User
Political Preferences from Streaming Communications. In Proceedings of the 52nd
annual meeting of the ACL, pages 186—196.

204 Bibliography

Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V Le, Mohammad Norouzi, Wolf-
gang Macherey, Maxim Krikun, Yuan Cao, Qin Gao, Klaus Macherey, et al. 2016.
Google’s neural machine translation system: Bridging the gap between human and
machine translation. arXiv preprint arXiv:1609.08144.

Tal Yarkoni and Jacob Westfall. 2017. Choosing prediction over explanation in psy-
chology: Lessons from machine learning. Perspectives on Psychological Science,
12(6):1100-1122.

Mark Yatskar, Luke Zettlemoyer, and Ali Farhadi. 2016. Situation recognition: Visual
semantic role labeling for image understanding. In Proceedings of the IEEE Confer-
ence on Computer Vision and Pattern Recognition, pages 5534-5542.

Jieyu Zhao, Tianlu Wang, Mark Yatskar, Vicente Ordonez, and Kai-Wei Chang. 2017.
Men Also Like Shopping: Reducing Gender Bias Amplification using Corpus-level
Constraints. In Proceedings of the 2017 Conference on Empirical Methods in Natural
Language Processing, pages 2979-2989.

George K Zipf. 1935. The psycho-biology of language: an introduction to dynamic
philology.

1. PROBABILITIES 205

1. Probabilities

In some cases, we will represent words as probabilities. In the case of topic models
or language models, this allows us to reason under uncertainty. However, there is an
even simpler reason to use probabilities: Keeping track of frequencies is often not too
practical for our purposes. In one of our previous examples, some quarterly reports
might be much longer than others, so seeing “energy” mentioned more often in those
longer reports than in shorter ones is not too informative by itself. We need to somehow
account for the length of the documents.

For this, normalized counts, or probabilities, are a much better indicator. Of course,
probabilities are nothing more than counts normalized by a Z-score. Typically, those
Z-scores are the counts of all words in our corpus.

count(w)
Pluw) =
where NV is the total count of words in our corpus.

A probability distribution over a vocabulary therefore assigns a probability be-
tween 0.0 and 1.0 to each word in the vocabulary. And if we summed up all probabilities
in the vocabulary, the result would be 1.0 (otherwise, it is not a probability distribution).

Technically, probabilities are continuous values. However, since each probability is
a discrete feature (i.e., it “means” something) in a feature vector, we cover them here
under discrete representations.

Say we have a corpus of 1000 documents, x is “natural” and occurs in 20 docu-
ments, and y is “language” and occurs in 50 documents.

The probability P(x) of seeing a word « if we reached into a big bag with all words
in our vocabulary, is therefore simply the number of documents that contain z, say
“natural” (here, 20), divided by the number of all documents in our corpus (1000).

count(documents w. “natural”) 20 1

P(natural) = = =—=20.02
(natural) number of all documents 1000 50
count(documents w. “language”) 50 1
(language) number of all documents 1000 20 0.05

Note that probabilities are not percentages (even though they are often used that
way in everyday use)! In order to express a probability in percent, you need to multiply
it by 100. We therefore have a 2% probability of randomly drawing the word “natural”,
and a 5% chance of drawing “language”.

As we have seen, though, word frequencies follow a Zipf distribution, so the
most frequent words get a lot of the probability mass, whereas most of the words get a
very small probability. Since this can lead to vanishingly small numbers that computers
sometimes can not handle, it is common to take the logarithm of the probabilities (also
called log-probabilities). Note that in log-space, multiplication becomes addition,

Z-score

probability distribu-
tion

log-probabilities

joint probability

conditional probabil-
ity

206 Bibliography

and division becomes subtraction. Therefore, an alternative way to compute the (log)
probability of a word is to subtract the log-count of the total number of words from the
log-count of the word count.

log P(w) = log count(w) — log N

To get a normal probability back, we have to exponentiate, but this can cause a loss
of precision. It is therefore usually better to store raw counts and convert them to log-
probabilities as needed.

log P(natural) = log 20 — log 1000 = log 1 — log 50 = —3.912023005428146

1.1. Joint Probability. P(z,y) is a joint probability, i.e., how likely is it that we
see x and y together, that is the words in one document (“natural language”, “language
natural”, or separated by other words, since order does not matter in this case). Say we
have 10 documents that contain both words, then

count(documents w. “natural” and “language”)

P(natural,l =
(natural, language) number of all documents

1001
1000 100

1.2. Conditional Probability. Words do not occur in isolation, but in context, and
in certain contexts, they are more likely than in others. If you hear the sentence “Most of
the constituents mistrusted the ...” you expect only a small number of words to follow.
“Politician” is much more likely than, say “handkerchief”. That is the probability of
“politician” in this context 1s much higher than that of “handkerchief”. Or, to put it in
mathematical notation:

P(politician| CONTEXT) > P(handkerchie f|[CONTEXT)

P(y|z) is a conditional probability, i.e., how likely are we to see y after having seen
xI.

0.01

Let’s reduce the context to one word for now and look at the words in our previous
example, i.e., “language” in a document that contains “natural”. We can compute this
as

count(documents w. “natural” and “language”)
P([L’, y) number of all documents

P(language|natm‘al) - - count(documents w. “natural”)

number of all documents

P:l:_

count(documents w. “natural” and “language”)

count(documents w. “natural”)

1. PROBABILITIES 207

Note that order does matter in this case! So the corresponding probability formula-
tion for seeing “natural” in a document that contains “language”, or P(z|y) = £&% g

P(y)
something completely different (namely 0.2).

1.3. Probability Distributions. So far, we have treated probabilities as normalized
counts, and for the most part, that works well. However, there is a more general way
of looking at probabilities, and that is as functions. They take as input an event (a word
or some other thing), and returns a number between 0 and 1. In the case of normalized
counts, the function itself was a lookup table, or maybe a division. However, we can
also have probability functions that are defined by an equation, and that take a number
of parameters other than the event we are interested in.

The general form of these probability functions is

f(x;0)

where x is the event we are interested in, and 6 is just a shorthand for any of the addi-
tional parameters.
What makes these functions probability distributions are the facts that they

(1) cover the entire sample space (for example all words)
(2) sum to 1.0 (if we added up the probabilities of all words)

In the case of texts, we mostly work with discrete probability distributions, i.e.,
there is a defined number of events, for example words. When we graph these distri-
butions, we usually use bar graphs. There are also continuous probability distributions,
the most well known of which is the normal or Gaussian distribution. However, for the
sake of this book, we will not need them. In the following, we will look at some of the
most common discrete probability distributions.

1.3.1. Uniform distribution. The simplest distribution is the one where all events
are equally likely, so all we have to return is 1 divided by the number of outcomes.

A common example is a die roll: all numbers are equally likely to come up. This
is also a good distribution to use if we do not know anything about the data and do not
want to bias our model unduly.

1.3.2. Bernoulli distribution. This is the simplest possible discrete distribution: it
only has two outcomes, and can be described with a single parameter ¢, which is the
chance of success. The other outcome is simply 1 — ¢

l—q ifr=0
PT(OC;Q)Z{Q K Z;izl

If ¢ = 0.5, the Bernoulli distribution is also a uniform distribution.

discrete probability
distributions

208 Bibliography

1.3.3. Multinomial distribution. Most often, we will deal with distributions that are
much larger than two outcomes, and much more irregular than uniform. Formally, it
is parametrized by a single parameter 6, which is a vector with all probabilities. The
mathematical definition is

1
P(x;0) = [;™
j=1

which is a very complicated way of writing “use the value at the vector position for z”
A good example is the distribution over characters in a sample of text. In Figure 32,
we can see how different characters have very different probabilities.

0.104 I probability

0.084

0.06 4

0.04 4

0.024

0.00-

FIGURE 32. Multinomial distribution over lower-case characters.

In fact, if we sort them by their likelihood, we can see that they rapidly decline. This
is another example of Zipf’s Law, and can be modeled with a Zeta distribution, which
we will not gointo here.

0.104 I probability

0.084

0.06 1

0.044

0.024

0.00-

FIGURE 33. Sorted multinomial distribution over lower-case characters.

et

distribu-

1. PROBABILITIES 209

1.3.4. Dirichlet distribtution. A Dirichlet distribution is a distribution over multi-
nomial distributions, and has only one parameter, called o. We can imagine a Dirich-
let distribution as a generator function that gives us multinomial distributions over k
outcomes for each document. The parameter v controls how peaked or uniform the
multinomial distributions are: if « is close to 0, the distributions are very peaked, i.e.,
one outcome will have (almost) all the probability mass. The larger o gets, the more
uniform the distributions become. Figure 34 shows the effect over 20 draws from a
Dirichlet over 3 outcomes with different values for «.

alpha=0.01 alpha=1 alpha=100
1
24 . wordl
2 m word2
5 . word3
6
74
8
w 9
= 10
C11
T 12

134

T T T T T T T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0 0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00

FIGURE 34. 20 multinomial distributions over three outcomes drawn
from Dirichlets differing in «

210 Bibliography

2. English Stopwords

a, about, above, across, after, afterwards, again, against, all, almost, alone, along,
already, also, although, always, am, among, amongst, amount, an, and, another, any,
anyhow, anyone, anything, anyway, anywhere, are, around, as, at, back, be, became,
because, become, becomes, becoming, been, before, beforehand, behind, being, below,
beside, besides, between, beyond, both, bottom, but, by, ca, call, can, cannot, could,
did, do, does, doing, done, down, due, during, each, eight, either, eleven, else, else-
where, empty, enough, even, ever, every, everyone, everything, everywhere, except,
few, fifteen, fifty, first, five, for, former, formerly, forty, four, from, front, full, further,
get, give, go, had, has, have, he, hence, her, here, hereafter, hereby, herein, hereupon,
hers, herself, him, himself, his, how, however, hundred, i, if,in, indeed, into, is, it, its,
itself, just, keep, last, latter, latterly, least, less, made, make, many, may, me, mean-
while, might, mine, more, moreover, most, mostly, move, much, must, my, myself,
name, namely, neither, never, nevertheless, next, nine, no, nobody, none, noone, nor,
not, nothing, now, nowhere, of, off, often, on, once, one, only, onto, or, other, others,
otherwise, our, ours, ourselves, out, over, own, part, per, perhaps, please, put, quite,
rather, re, really, regarding, same, say, see, seem, seemed, seeming, seems, serious, sev-
eral, she, should, show, side, since, six, sixty, so, some, somehow, someone, something,
sometime, sometimes, somewhere, still, such, take, ten, than, that, the, their, them,
themselves, then, thence, there, thereafter, thereby, therefore, therein, thereupon, these,
they, third, this, those, though, three, through, throughout, thru, thus, to, together, too,
top, toward, towards, twelve, twenty, two, under, unless, until, up, upon, us, used, us-
ing, various, very, via, was, we, well, were, what, whatever, when, whence, whenever,
where, whereafter, whereas, whereby, wherein, whereupon, wherever, whether, which,
while, whither, who, whoever, whole, whom, whose, why, will, with, within, without,
would, yet, you, your, yours, yourself, yourselves

